Shah Tania Akter Sujana, Md. Shahjaman, Atul Chandra Singha
{"title":"Application of bioinformatic tools in cell type classification for single-cell RNA-seq data","authors":"Shah Tania Akter Sujana, Md. Shahjaman, Atul Chandra Singha","doi":"10.1016/j.compbiolchem.2024.108332","DOIUrl":null,"url":null,"abstract":"<div><div>The advancements in single-cell RNA sequencing (scRNAseq) technology have significantly transformed genomics research, enabling the handling of thousands of cells in each experiment. As of now, 32,068 research studies have been cataloged in the Pubmed database. The primary aim of scRNAseq investigations is to identify cell types, understand the antitumor immune response, and identify new and uncommon cell types. Traditional techniques for identifying cell types include microscopy, histology, and pathological characteristics. However, the complexity of instruments and the need for precise experimental design make it difficult to fully capture the overall heterogeneity. Unsupervised clustering and supervised classification methods have been used to solve this task. Supervised cell type classification methods have gained popularity as large-scale, high-quality, well-annotated and more robust results compared to clustering methods. A recent study showed that support vector machine (SVM) gives a high-quality classification performance in different scenarios. In this article, we compare and evaluate the performance of four different kernels (sigmoid, linear, radial, polynomial) of SVM. The results of the experiments on three standard scRNA-seq datasets indicate that SVM with linear and SVM with sigmoid kernel classify the cells more accurately (approx. 99 %) where SVM linear kernel method has remarkably fast computation time and we also evaluate the results using some single cell specific evaluation matrices F-1 score, MCC, AUC value. Additionally, it sheds light on the potential use of kernels of SVM to give underlying information of single-cell RNA-Seq data more effectively.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108332"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124003207","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancements in single-cell RNA sequencing (scRNAseq) technology have significantly transformed genomics research, enabling the handling of thousands of cells in each experiment. As of now, 32,068 research studies have been cataloged in the Pubmed database. The primary aim of scRNAseq investigations is to identify cell types, understand the antitumor immune response, and identify new and uncommon cell types. Traditional techniques for identifying cell types include microscopy, histology, and pathological characteristics. However, the complexity of instruments and the need for precise experimental design make it difficult to fully capture the overall heterogeneity. Unsupervised clustering and supervised classification methods have been used to solve this task. Supervised cell type classification methods have gained popularity as large-scale, high-quality, well-annotated and more robust results compared to clustering methods. A recent study showed that support vector machine (SVM) gives a high-quality classification performance in different scenarios. In this article, we compare and evaluate the performance of four different kernels (sigmoid, linear, radial, polynomial) of SVM. The results of the experiments on three standard scRNA-seq datasets indicate that SVM with linear and SVM with sigmoid kernel classify the cells more accurately (approx. 99 %) where SVM linear kernel method has remarkably fast computation time and we also evaluate the results using some single cell specific evaluation matrices F-1 score, MCC, AUC value. Additionally, it sheds light on the potential use of kernels of SVM to give underlying information of single-cell RNA-Seq data more effectively.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.