Gut microbial-derived phenylacetylglutamine accelerates host cellular senescence.

IF 17 Q1 CELL BIOLOGY Nature aging Pub Date : 2025-01-10 DOI:10.1038/s43587-024-00795-w
Hao Yang, Tongyao Wang, Chenglang Qian, Huijing Wang, Dong Yu, Meifang Shi, Mengwei Fu, Xueguang Liu, Miaomiao Pan, Xingyu Rong, Zhenming Xiao, Xiejiu Chen, Anaguli Yeerken, Yonglin Wu, Yufan Zheng, Hui Yang, Ming Zhang, Tao Liu, Peng Qiao, Yifan Qu, Yong Lin, Yiqin Huang, Jianliang Jin, Nan Liu, Yumei Wen, Ning Sun, Chao Zhao
{"title":"Gut microbial-derived phenylacetylglutamine accelerates host cellular senescence.","authors":"Hao Yang, Tongyao Wang, Chenglang Qian, Huijing Wang, Dong Yu, Meifang Shi, Mengwei Fu, Xueguang Liu, Miaomiao Pan, Xingyu Rong, Zhenming Xiao, Xiejiu Chen, Anaguli Yeerken, Yonglin Wu, Yufan Zheng, Hui Yang, Ming Zhang, Tao Liu, Peng Qiao, Yifan Qu, Yong Lin, Yiqin Huang, Jianliang Jin, Nan Liu, Yumei Wen, Ning Sun, Chao Zhao","doi":"10.1038/s43587-024-00795-w","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota plays a crucial role in the host health in the aging process. However, the mechanisms for how gut microbiota triggers cellular senescence and the consequent impact on human aging remain enigmatic. Here we show that phenylacetylglutamine (PAGln), a metabolite linked to gut microbiota, drives host cellular senescence. Our findings indicate that the gut microbiota alters with age, which leads to increased production of phenylacetic acid (PAA) and its downstream metabolite PAGln in older individuals. The PAGln-induced senescent phenotype was verified in both cellular models and mouse models. Further experiments revealed that PAGln induces mitochondrial dysfunction and DNA damage via adrenoreceptor (ADR)-AMP-activated protein kinase (AMPK) signaling. Blockade of ADRs as well as senolytics therapy impede PAGln-induced cellular senescence in vivo, implying potential anti-aging therapies. This combined evidence reveals that PAGln, a naturally occurring metabolite of human gut microbiota, mechanistically accelerates host cellular senescence.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-024-00795-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gut microbiota plays a crucial role in the host health in the aging process. However, the mechanisms for how gut microbiota triggers cellular senescence and the consequent impact on human aging remain enigmatic. Here we show that phenylacetylglutamine (PAGln), a metabolite linked to gut microbiota, drives host cellular senescence. Our findings indicate that the gut microbiota alters with age, which leads to increased production of phenylacetic acid (PAA) and its downstream metabolite PAGln in older individuals. The PAGln-induced senescent phenotype was verified in both cellular models and mouse models. Further experiments revealed that PAGln induces mitochondrial dysfunction and DNA damage via adrenoreceptor (ADR)-AMP-activated protein kinase (AMPK) signaling. Blockade of ADRs as well as senolytics therapy impede PAGln-induced cellular senescence in vivo, implying potential anti-aging therapies. This combined evidence reveals that PAGln, a naturally occurring metabolite of human gut microbiota, mechanistically accelerates host cellular senescence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肠道微生物衍生的苯乙酰谷氨酰胺加速宿主细胞衰老。
肠道菌群在宿主衰老过程中对健康起着至关重要的作用。然而,肠道微生物群如何引发细胞衰老及其对人类衰老的影响的机制仍然是一个谜。在这里,我们表明苯乙酰谷氨酰胺(PAGln),一种与肠道微生物群相关的代谢物,驱动宿主细胞衰老。我们的研究结果表明,肠道微生物群随着年龄的增长而改变,这导致老年人苯乙酸(PAA)及其下游代谢物PAGln的产生增加。在细胞模型和小鼠模型中验证了pagln诱导的衰老表型。进一步的实验表明,PAGln通过肾上腺素受体(ADR)- amp活化蛋白激酶(AMPK)信号通路诱导线粒体功能障碍和DNA损伤。阻断不良反应和抗衰老治疗可在体内阻止pagln诱导的细胞衰老,这意味着潜在的抗衰老疗法。这些综合证据表明,人类肠道微生物群自然产生的代谢物PAGln,在机械上加速了宿主细胞的衰老。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
期刊最新文献
Mitochondria-enriched hematopoietic stem cells exhibit elevated self-renewal capabilities, thriving within the context of aged bone marrow. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination. The complex interplay between aging and cancer. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan. Restoring the primary cilia-autophagy axis in neurons to foster cognitive resilience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1