A roadmap from the bond strength to the grain-boundary energies and macro strength of metals

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-13 DOI:10.1038/s41467-025-55921-y
Xin Li, Hao Wu, Wang Gao, Qing Jiang
{"title":"A roadmap from the bond strength to the grain-boundary energies and macro strength of metals","authors":"Xin Li, Hao Wu, Wang Gao, Qing Jiang","doi":"10.1038/s41467-025-55921-y","DOIUrl":null,"url":null,"abstract":"<p>Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals. Importantly, our framework not only applies to both pure metals and MPEAs, but also unravels the distinction of the bond strength caused by elemental compositions, lattice structures, high-entropy, and amorphous effects. These findings build a physical picture across bond strength, grain-boundary energies and strength of metals by using easily accessible material properties and provide a robust method for the design of high-strength alloys.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55921-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals. Importantly, our framework not only applies to both pure metals and MPEAs, but also unravels the distinction of the bond strength caused by elemental compositions, lattice structures, high-entropy, and amorphous effects. These findings build a physical picture across bond strength, grain-boundary energies and strength of metals by using easily accessible material properties and provide a robust method for the design of high-strength alloys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从结合强度到晶界能和金属宏观强度的路线图
结合强度与金属宏观强度的关系对于理解多主元素合金的力学性能和设计多主元素合金具有重要意义。基于晶界在金属强度中的作用,我们引入了一个预测模型,通过内聚能和原子半径来确定金属的晶界能和强度。该方案源于紧密结合模型的d波段特性和断键精神,并证明了不同金属的排斥/吸引效应对键强度变化的影响是不同的。重要的是,我们的框架不仅适用于纯金属和mpea,而且还揭示了由元素组成、晶格结构、高熵和非晶效应引起的键强度的区别。这些发现通过利用易于获取的材料特性,构建了金属的结合强度、晶界能和强度的物理图谱,并为高强度合金的设计提供了可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Breaking dense integration limits: inverse-designed lithium niobate multimode photonic circuits. Chromatin remodeling factor BAF155 coordinates oligodendroglial-neuronal communications linked to regional myelination and autism-like behavioral deficits in mice Targeted antisense oligonucleotide treatment rescues developmental alterations in spinal muscular atrophy organoids TMEM120A maintains adipose tissue lipid homeostasis through ER CoA channeling HIF-1α-mediated feedback prevents TOR signalling from depleting oxygen supply and triggering stress during normal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1