Yaning Xu, Shiyan Ai, Tiantian Wu, Chengxu Zhou, Qing Huang, Baiyan Li, Dan Tian, Xian-He Bu
{"title":"Bioinspired Photo‐Thermal Catalytic System using Covalent Organic Framework‐based Aerogel for Synchronous Seawater Desalination and H2O2 Production","authors":"Yaning Xu, Shiyan Ai, Tiantian Wu, Chengxu Zhou, Qing Huang, Baiyan Li, Dan Tian, Xian-He Bu","doi":"10.1002/anie.202421990","DOIUrl":null,"url":null,"abstract":"Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light‐harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters. Based on such architecture, the obtained ASEC (namely ASEC‐NJFU‐1) can efficiently realize parallel production of freshwater and H2O2 from natural seawater under natural light. The total solar energy conversion (SEC) of ASEC‐NJFU‐1 reaches up to 8047 kJ m‐2 h‐1, corresponding to production rates of freshwater and H2O2 are 3.56 kg m‐2 h‐1 and 19 mM m‐2 h‐1, respectively, which is a record‐high value among all photothermal‐photocatalytic systems reported to date. Mechanism investigation of combining spectrum and experimental studies indicated that the high SEC performance for ASEC‐NJFU‐1 was attributed to the presence of plant bioinspired architecture with carbon nanotubes as solar‐harvestor and COF‐based oriented aerogel as reactors and transporters. Our work thus establishes a novel artificial photosynthesis system for highly efficient solar energy utilization.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"21 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light‐harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters. Based on such architecture, the obtained ASEC (namely ASEC‐NJFU‐1) can efficiently realize parallel production of freshwater and H2O2 from natural seawater under natural light. The total solar energy conversion (SEC) of ASEC‐NJFU‐1 reaches up to 8047 kJ m‐2 h‐1, corresponding to production rates of freshwater and H2O2 are 3.56 kg m‐2 h‐1 and 19 mM m‐2 h‐1, respectively, which is a record‐high value among all photothermal‐photocatalytic systems reported to date. Mechanism investigation of combining spectrum and experimental studies indicated that the high SEC performance for ASEC‐NJFU‐1 was attributed to the presence of plant bioinspired architecture with carbon nanotubes as solar‐harvestor and COF‐based oriented aerogel as reactors and transporters. Our work thus establishes a novel artificial photosynthesis system for highly efficient solar energy utilization.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.