Buffered Hydroxyl Radical for Photocatalytic Non‐Oxidative Methane Coupling

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202420606
Nengchao Luo, Xueyuan Wang, Xueshang Xin, Lunqiao Xiong, Jianlong Yang, Tieou Wang, Yang Yang, Zhipeng Huang, Junwang Tang, Feng Wang
{"title":"Buffered Hydroxyl Radical for Photocatalytic Non‐Oxidative Methane Coupling","authors":"Nengchao Luo, Xueyuan Wang, Xueshang Xin, Lunqiao Xiong, Jianlong Yang, Tieou Wang, Yang Yang, Zhipeng Huang, Junwang Tang, Feng Wang","doi":"10.1002/anie.202420606","DOIUrl":null,"url":null,"abstract":"Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over‐oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo‐irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42−, the electron transfer from OH− to excited‐state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+. When combined with a Ru/SrTiO3:Rh photocatalyst, the buffered •OH converts methane to C2+ hydrocarbons and H2 with formation rates of 246 and 418 μmol h−1, respectively. The apparent quantum efficiency reaches 13.0 ± 0.2%, along with 10.2% methane conversion and 81% C2+ selectivity after 80 hours of reaction. Overall, this work presents a strategy for controlling active radicals for selective and efficient photocatalysis.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420606","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over‐oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo‐irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42−, the electron transfer from OH− to excited‐state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+. When combined with a Ru/SrTiO3:Rh photocatalyst, the buffered •OH converts methane to C2+ hydrocarbons and H2 with formation rates of 246 and 418 μmol h−1, respectively. The apparent quantum efficiency reaches 13.0 ± 0.2%, along with 10.2% methane conversion and 81% C2+ selectivity after 80 hours of reaction. Overall, this work presents a strategy for controlling active radicals for selective and efficient photocatalysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
A Metastable State Facilitates Low Temperature CO Oxidation over Pt Nanoparticles Building Three-Dimensional Complexity by Intramolecular 2-Aminoallyl Cation–Diene (4 + 3) Cycloaddition Tiny-Ligand Solvation Electrolyte Enabled Fast-charging Aqueous Batteries Kinetic Control of Self-Assembly Pathway in Dual Dynamic Covalent Polymeric Systems Leveraging Iron in the Electrolyte to Improve Oxygen Evolution Reaction Performance: Fundamentals, Strategies, and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1