{"title":"Rheology of Bingham viscoplastic flow triggered by a rotating and radially stretching disk","authors":"Mustafa Turkyilmazoglu, Ioan Pop","doi":"10.1108/hff-11-2024-0845","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the flow and heat transfer characteristics of a Bingham viscoplastic fluid subjected to the combined effects of axial rotation and radial stretching of a circular disk. Building upon existing models for Bingham fluids on stationary walls, we extend the formulation to incorporate the effects of a linearly stretching disk using von Kármán similarity transformations.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The resulting system of nonlinear ordinary differential equations is solved to characterize the flow and thermal fields. Three dimensionless parameters govern the momentum layer: a swirling number capturing the balance between rotation and stretching, a Bingham number characterizing the fluid’s yield stress and a modified Reynolds number incorporating the disk stretching. The Prandtl number controls the thermal response.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>For purely stretching flows, a two-dimensional flow structure emerges. However, the introduction of rotation induces three-dimensional flow behavior. Unlike previous studies suggesting that moderate Bingham numbers are sufficient for non-Newtonian effects on purely revolving disks, the findings indicate that significantly higher yield stresses are required to observe non-Newtonian characteristics under radial stretching conditions. This difference can be attributed to the enhancing influence of wall movement on the fluid dynamics. At high Bingham numbers, a two-layer flow structure develops, comprising an unyielded plug region above the disk and a yielded shear layer adjacent to the wall. The von Kármán viscous pump mechanism drives the Bingham flow within this regime.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Physical quantities such as drag force due to wall shear stress, torque resulting from tangential shear stress and Nusselt number are extracted from the quantitative data.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"24 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-11-2024-0845","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to investigate the flow and heat transfer characteristics of a Bingham viscoplastic fluid subjected to the combined effects of axial rotation and radial stretching of a circular disk. Building upon existing models for Bingham fluids on stationary walls, we extend the formulation to incorporate the effects of a linearly stretching disk using von Kármán similarity transformations.
Design/methodology/approach
The resulting system of nonlinear ordinary differential equations is solved to characterize the flow and thermal fields. Three dimensionless parameters govern the momentum layer: a swirling number capturing the balance between rotation and stretching, a Bingham number characterizing the fluid’s yield stress and a modified Reynolds number incorporating the disk stretching. The Prandtl number controls the thermal response.
Findings
For purely stretching flows, a two-dimensional flow structure emerges. However, the introduction of rotation induces three-dimensional flow behavior. Unlike previous studies suggesting that moderate Bingham numbers are sufficient for non-Newtonian effects on purely revolving disks, the findings indicate that significantly higher yield stresses are required to observe non-Newtonian characteristics under radial stretching conditions. This difference can be attributed to the enhancing influence of wall movement on the fluid dynamics. At high Bingham numbers, a two-layer flow structure develops, comprising an unyielded plug region above the disk and a yielded shear layer adjacent to the wall. The von Kármán viscous pump mechanism drives the Bingham flow within this regime.
Originality/value
Physical quantities such as drag force due to wall shear stress, torque resulting from tangential shear stress and Nusselt number are extracted from the quantitative data.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf