{"title":"1.5D Chiral Perovskites Mediated by Hydrogen‐Bonding Network with Remarkable Spin‐Polarized Property","authors":"Shuo Sun, Jiawei Jiang, Menghui Jia, Yunfei Tian, Yin Xiao","doi":"10.1002/anie.202423314","DOIUrl":null,"url":null,"abstract":"In this study, we developed new chiral hybrid perovskites, (R/S‐MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S‐methylbenzylammonium (R/S‐MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D. This structure is featured by a hydrogen‐bonding‐network‐induced arrangement of zigzag inorganic chains, further forming an organized layered architecture. The structural dimensionality affects both electronic and spin‐related properties. Density functional theory (DFT) calculations reveal Rashba splitting induced by the inversion asymmetry of the crystal structure, while circularly polarized transient absorption spectroscopy confirms spin lifetime on the nanosecond timescale. Magnetic conductive‐probe atomic force microscopy (mCP‐AFM) measurements demonstrate exceptional chiral‐induced spin selectivity (CISS) with maximum spin polarization degrees of (92 ± 1)% and (‐94 ± 2)% for (R‐MBA)(GA)PbI4 and (S‐MBA)(GA)PbI4, respectively. These findings underscore the potential of (R/S‐MBA)(GA)PbI4 as promising candidates for next‐generation spintronic devices, also highlight the critical role of chemical environment in sculpturing the structural dimension and spin‐polarized property of chiral perovskites.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"11 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423314","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed new chiral hybrid perovskites, (R/S‐MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S‐methylbenzylammonium (R/S‐MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D. This structure is featured by a hydrogen‐bonding‐network‐induced arrangement of zigzag inorganic chains, further forming an organized layered architecture. The structural dimensionality affects both electronic and spin‐related properties. Density functional theory (DFT) calculations reveal Rashba splitting induced by the inversion asymmetry of the crystal structure, while circularly polarized transient absorption spectroscopy confirms spin lifetime on the nanosecond timescale. Magnetic conductive‐probe atomic force microscopy (mCP‐AFM) measurements demonstrate exceptional chiral‐induced spin selectivity (CISS) with maximum spin polarization degrees of (92 ± 1)% and (‐94 ± 2)% for (R‐MBA)(GA)PbI4 and (S‐MBA)(GA)PbI4, respectively. These findings underscore the potential of (R/S‐MBA)(GA)PbI4 as promising candidates for next‐generation spintronic devices, also highlight the critical role of chemical environment in sculpturing the structural dimension and spin‐polarized property of chiral perovskites.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.