CeO2 Modification Promotes the Oxidation Kinetics for Adipic Acid Electrosynthesis from KA Oil Oxidation at 200 mA cm−2

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202423432
Shuoshuo Guo, Changhong Wang, Huizhi Li, Tieliang Li, Cuibo Liu, Ying Gao, Bo-Hang Zhao, Bin Zhang
{"title":"CeO2 Modification Promotes the Oxidation Kinetics for Adipic Acid Electrosynthesis from KA Oil Oxidation at 200 mA cm−2","authors":"Shuoshuo Guo, Changhong Wang, Huizhi Li, Tieliang Li, Cuibo Liu, Ying Gao, Bo-Hang Zhao, Bin Zhang","doi":"10.1002/anie.202423432","DOIUrl":null,"url":null,"abstract":"Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.0992 mmol h−1 cm−2 yield rate and 87% Faradaic efficiency at a lower potential. Mechanistic investigations demonstrate that cyclohexanol electrooxidation to AA is a gradual oxidation process involving the dehydrogenation of cyclohexanol to cyclohexanone, the generation of 2‐hydroxy cyclohexanone, and subsequent C−C cleavage. Theoretical calculations reveal that electronic interactions between CeO2 and NiCo2O4 decrease the energy barrier of cyclohexanone oxidation to 2‐hydroxy cyclohexanone and inhibit the *OH to *O step, leading to AA electrosynthesis with a high yield rate and FE. Kinetic analysis further elucidates the effect of CeO2 on promoting cyclohexanone adsorption and activation on the electrode surface, thus facilitating the reaction kinetics. Moreover, a two‐electrode flow reactor is constructed to produce 72.1 mmol AA and 10.4 L H2 by using KA oil as the anode feedstock at 2.5 A (200 mA cm−2), demonstrating promising potential.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"43 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.0992 mmol h−1 cm−2 yield rate and 87% Faradaic efficiency at a lower potential. Mechanistic investigations demonstrate that cyclohexanol electrooxidation to AA is a gradual oxidation process involving the dehydrogenation of cyclohexanol to cyclohexanone, the generation of 2‐hydroxy cyclohexanone, and subsequent C−C cleavage. Theoretical calculations reveal that electronic interactions between CeO2 and NiCo2O4 decrease the energy barrier of cyclohexanone oxidation to 2‐hydroxy cyclohexanone and inhibit the *OH to *O step, leading to AA electrosynthesis with a high yield rate and FE. Kinetic analysis further elucidates the effect of CeO2 on promoting cyclohexanone adsorption and activation on the electrode surface, thus facilitating the reaction kinetics. Moreover, a two‐electrode flow reactor is constructed to produce 72.1 mmol AA and 10.4 L H2 by using KA oil as the anode feedstock at 2.5 A (200 mA cm−2), demonstrating promising potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环己醇/环己酮在水中的电催化氧化反应为获得己二酸(AA)提供了一种前景广阔的策略,而己二酸是聚合物行业的一种重要原料。然而,由于对反应机理的不甚了解,这一过程受到缓慢的动力学和有限的法拉第效率(FE)的阻碍。本文开发的 NiCo2O4/CeO2 能够在较低电位下将环己醇电氧化成 AA,产率为 0.0992 mmol h-1 cm-2,法拉第效率为 87%。机理研究表明,环己醇电氧化成 AA 是一个渐进的氧化过程,包括环己醇脱氢成环己酮、生成 2- 羟基环己酮以及随后的 C-C 裂解。理论计算显示,CeO2 和 NiCo2O4 之间的电子相互作用降低了环己酮氧化成 2-羟基环己酮的能垒,抑制了 *OH 到 *O 的步骤,从而导致 AA 电合成具有高产率和 FE。动力学分析进一步阐明了 CeO2 对促进环己酮在电极表面吸附和活化的作用,从而促进了反应动力学。此外,利用 KA 油作为阳极原料,在 2.5 A(200 mA cm-2)的条件下,构建了一个双电极流动反应器,生产出 72.1 mmol AA 和 10.4 L H2,显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Room‐temperature Magnetocapacitance Spanning 97 K Hysteresis in Molecular Material An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties. Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing Photoinduced Late‐Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives Front Cover: Interdependence of Support Wettability, Electrodeposition Rate, Sodium Metal Anode and SEI Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1