Strained Dehydro-[2,2]-paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202420667
Xue Zhang, Yi Zhou, Zhi-Xiang Yu, Chen-Ho Tung, Zhenghu Xu
{"title":"Strained Dehydro-[2,2]-paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization","authors":"Xue Zhang, Yi Zhou, Zhi-Xiang Yu, Chen-Ho Tung, Zhenghu Xu","doi":"10.1002/anie.202420667","DOIUrl":null,"url":null,"abstract":"Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts. However, the synthesis of chiral PCP derivatives remains a longstanding challenge. Current synthetic methods primarily rely on chiral preparative liquid chromatography separation or chemical and kinetic resolution reactions. Here, we report an enantioconvergent alkynylation of an in situ-formed dehydro-[2,2]-paracyclophane intermediate by asymmetric copper(I) catalysis. This approach enables the efficient synthesis of valuable planar chiral PCP building blocks and heterocycles with good yields and excellent enantioselectivity. The success of this reaction lies in the development of a practical route to access strained dehydro-[2,2]-paracyclophane intermediates, which can also be utilized in various strain-release nucleophilic or cycloaddition reactions to synthesize diverse functionalized PCPs. DFT calculations of this reaction suggest that the enantioselectivity is determined by the aryne complexation with chiral copper(I) acetylide and the subsequent insertion reaction.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"13 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420667","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts. However, the synthesis of chiral PCP derivatives remains a longstanding challenge. Current synthetic methods primarily rely on chiral preparative liquid chromatography separation or chemical and kinetic resolution reactions. Here, we report an enantioconvergent alkynylation of an in situ-formed dehydro-[2,2]-paracyclophane intermediate by asymmetric copper(I) catalysis. This approach enables the efficient synthesis of valuable planar chiral PCP building blocks and heterocycles with good yields and excellent enantioselectivity. The success of this reaction lies in the development of a practical route to access strained dehydro-[2,2]-paracyclophane intermediates, which can also be utilized in various strain-release nucleophilic or cycloaddition reactions to synthesize diverse functionalized PCPs. DFT calculations of this reaction suggest that the enantioselectivity is determined by the aryne complexation with chiral copper(I) acetylide and the subsequent insertion reaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受约束脱氢-[2,2]-副环烷平面手性构建和[2.2]副环烷官能化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
In-Situ Formation of Three-Dimensional Network Intrinsic Microporous Ladder Polymer Membranes with Ultra-High Gas Separation Performance and Anti-Trade-Off Effect Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins Sprayed Aqueous Microdroplets for Spontaneous Synthesis of Functional Microgels A C–H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1