Tawhid Pranto, Carla C. Fraenza, Frederik Philippi, Daniel Rauber, Christopher W. M. Kay, Tom Welton, Steven G. Greenbaum, Sophia Suarez
{"title":"Dynamics of fluorinated imide-based ionic liquids using nuclear magnetic resonance techniques","authors":"Tawhid Pranto, Carla C. Fraenza, Frederik Philippi, Daniel Rauber, Christopher W. M. Kay, Tom Welton, Steven G. Greenbaum, Sophia Suarez","doi":"10.1039/d4cp03166k","DOIUrl":null,"url":null,"abstract":"There is increasing interest in studying molecular motions in ionic liquids to gain better insights into their transport properties and to expand their applications. In this study, we have employed the fast field cycling relaxometry and pulsed field gradient nuclear magnetic resonance techniques to investigate the rotational and translational dynamics of fluorinated imide-based ionic liquids (ILs) at different temperatures. We have studied a total of six ILs composed of the 1-butyl-3-methylimidazolium cation ([BMIM]<small><sup>+</sup></small>) combined with chemically modified analogs of the bis((trifluoromethyl)sulfonyl)imide anion ([NTf<small><sub>2</sub></small>]<small><sup>−</sup></small> or [TFSI]<small><sup>−</sup></small>). The primary objective of this paper is to broaden the understanding of how the anion's conformational flexibility, fluorination, and mass affect the molecular dynamics of cations and anions. Our results indicate that flexibility has the most significant impact on the rotational and translational motions of ions. Meanwhile, the effect of fluorination and mass is only relevant when conformational flexibility does not change significantly between the ILs being compared.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03166k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing interest in studying molecular motions in ionic liquids to gain better insights into their transport properties and to expand their applications. In this study, we have employed the fast field cycling relaxometry and pulsed field gradient nuclear magnetic resonance techniques to investigate the rotational and translational dynamics of fluorinated imide-based ionic liquids (ILs) at different temperatures. We have studied a total of six ILs composed of the 1-butyl-3-methylimidazolium cation ([BMIM]+) combined with chemically modified analogs of the bis((trifluoromethyl)sulfonyl)imide anion ([NTf2]− or [TFSI]−). The primary objective of this paper is to broaden the understanding of how the anion's conformational flexibility, fluorination, and mass affect the molecular dynamics of cations and anions. Our results indicate that flexibility has the most significant impact on the rotational and translational motions of ions. Meanwhile, the effect of fluorination and mass is only relevant when conformational flexibility does not change significantly between the ILs being compared.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.