Juan Cui, Huan Zheng, Miao Zheng, Huajie Song, Yu Yang
{"title":"Enhanced carrier mobility in strain-engineered PdAs2 monolayer boosted by suppressing interband scattering","authors":"Juan Cui, Huan Zheng, Miao Zheng, Huajie Song, Yu Yang","doi":"10.1039/d4cp04157g","DOIUrl":null,"url":null,"abstract":"Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs<small><sub>2</sub></small> monolayer under different biaxial tensile strains based on the state-of-the-art electron–phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs<small><sub>2</sub></small> monolayers. The electron mobility experiences a rapid increase under tensile strain over 2% and can reach 670 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> under 4% strain, which is higher than common 2D semiconductors. The rapid increase of electron mobility originates from the ordering change of the conduction bands and the suppressed interband scattering. Our study highlights the role of electron–phonon coupling in the electron transport and provides new insights into the optimization of carrier mobility.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"29 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04157g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs2 monolayer under different biaxial tensile strains based on the state-of-the-art electron–phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs2 monolayers. The electron mobility experiences a rapid increase under tensile strain over 2% and can reach 670 cm2 V−1 s−1 under 4% strain, which is higher than common 2D semiconductors. The rapid increase of electron mobility originates from the ordering change of the conduction bands and the suppressed interband scattering. Our study highlights the role of electron–phonon coupling in the electron transport and provides new insights into the optimization of carrier mobility.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.