Water-, Oil-, and Stain-Resistant Lignin-Based Degradable Waterborne Polyurethane for Paper Packaging Coating

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-01-12 DOI:10.1021/acssuschemeng.4c08269
Haixu Wang, Ying-An Mai, Wenlian Qiu, Weifeng Liu, Dongjie Yang, Zhiqiang Fang, Xueqing Qiu
{"title":"Water-, Oil-, and Stain-Resistant Lignin-Based Degradable Waterborne Polyurethane for Paper Packaging Coating","authors":"Haixu Wang, Ying-An Mai, Wenlian Qiu, Weifeng Liu, Dongjie Yang, Zhiqiang Fang, Xueqing Qiu","doi":"10.1021/acssuschemeng.4c08269","DOIUrl":null,"url":null,"abstract":"Degradable paper-based packaging materials are promising alternatives to plastic packaging. However, the inherent limitations of paper, such as poor water and oil resistance, restrict its broader applications. It is essential to develop green and degradable coatings to compensate for the shortcomings of paper materials. In this study, we prepared a tough, hydrophobic, stain-resistant, and degradable lignin-based waterborne polyurethane (LWPU) for a paper packaging coating. LWPU emulsions with good stability were synthesized using low-molecular-weight lignin (LMWL) and polycaprolactone diol (PCL) as raw materials and poly(dimethylsiloxane) (PDMS) as a modifier. LWPU films exhibited excellent mechanical properties, with the optimal tensile strength of 40.3 MPa and elongation at break of 1148%, hydrophobicity, antiaging properties, and UV shielding. The mechanical properties of the coated papers were significantly affected by the emulsion permeation and the type of paper substrate. The dense LWPU coating enhanced the barrier performance of the paper against water, oil, and gas. Incorporating PDMS segments into the coating further improved the hydrophobicity and stain resistance of the paper, allowing for easy removal of common stains. Moreover, the coating can be completely removed from the paper using solvent-dissolving and chemical degradation methods, which is advantageous for paper recycling. This work provides a reference for the industrial application of LWPU emulsions as green paper coatings.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"29 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Degradable paper-based packaging materials are promising alternatives to plastic packaging. However, the inherent limitations of paper, such as poor water and oil resistance, restrict its broader applications. It is essential to develop green and degradable coatings to compensate for the shortcomings of paper materials. In this study, we prepared a tough, hydrophobic, stain-resistant, and degradable lignin-based waterborne polyurethane (LWPU) for a paper packaging coating. LWPU emulsions with good stability were synthesized using low-molecular-weight lignin (LMWL) and polycaprolactone diol (PCL) as raw materials and poly(dimethylsiloxane) (PDMS) as a modifier. LWPU films exhibited excellent mechanical properties, with the optimal tensile strength of 40.3 MPa and elongation at break of 1148%, hydrophobicity, antiaging properties, and UV shielding. The mechanical properties of the coated papers were significantly affected by the emulsion permeation and the type of paper substrate. The dense LWPU coating enhanced the barrier performance of the paper against water, oil, and gas. Incorporating PDMS segments into the coating further improved the hydrophobicity and stain resistance of the paper, allowing for easy removal of common stains. Moreover, the coating can be completely removed from the paper using solvent-dissolving and chemical degradation methods, which is advantageous for paper recycling. This work provides a reference for the industrial application of LWPU emulsions as green paper coatings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Accelerated Hydrolysis of Amorphous Polylactide Containing Salicylate Additives Improving Carbon Dioxide Conversion Efficiency through Immobilization of Formate Dehydrogenase PbFDH and Its Mutant D533S/E684I on Nanostructured Carriers Poly(3,4-ethylenedioxythiophene) Decorated FeS2@C Hollow Nanospheres Toward High Performance Lithium–Sulfur Batteries Risk Prediction and Control Study of a Multitower Separation Process Based on DQRA and Bi-LSTM Recycling Plastic Waste by Solid Phase Mixing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1