Mesoporous Cu Nanoplates with Exposed Cu+ Sites for Efficient Electrocatalytic Transfer Semi-Hydrogenation of Alkynes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202423112
Hao Lv, Lizhi Sun, Deqing Tang, Ben Liu
{"title":"Mesoporous Cu Nanoplates with Exposed Cu+ Sites for Efficient Electrocatalytic Transfer Semi-Hydrogenation of Alkynes","authors":"Hao Lv, Lizhi Sun, Deqing Tang, Ben Liu","doi":"10.1002/anie.202423112","DOIUrl":null,"url":null,"abstract":"Electrocatalytic transfer alkyne semi-hydrogenation with H2O as hydrogen source is industrially promising for selective electrosynthesis of high value-added alkenes while inhibiting byproduct alkanes. Although great achievements, their development has remarkably restricted by designing atomically sophisticated electrocatalysts. Here, we reported single-crystalline mesoporous copper nanoplates (meso-Cu PLs) as a robust yet highly efficient electrocatalyst for selective alkene electrosynthesis from transfer semi-hydrogenation reaction of alkyne in H2O. Anisotropic meso-Cu PLs were prepared through a facile epitaxial growth strategy with functional C22H45N(CH3)2-C3H6-SH as concurrent mesopore-forming and structure-controlled surfactant. Different to nonporous Cu counterparts with flat surface, meso-Cu PLs exposed abundant Cu+ sites, which not only stabilized active H* radicals from electrocatalytic H2O splitting without coupling into molecular H2 but also accelerated kinetically the desorption of semi-hydrogenated alkenes. With 4-aminophenylacetylene (4-AP) as the substrate, anisotropic meso-Cu PLs delivered superior electrocatalytic transfer semi-hydrogenation performance with up to 99% of 4-aminostyrene (4-AS) selectivity and 100% of 4-AP conversion as well as good cycle stability (6 cycles). Meanwhile, meso-Cu PLs were electrocatalytically applicable for transfer semi-hydrogenation of various alkynes. This work paved an alternative paradigm for designing robust mesoporous metal electrocatalysts with structurally functional metal sites applied in the selective electrosynthesis of industrially value-added chemicals in H2O.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"84 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic transfer alkyne semi-hydrogenation with H2O as hydrogen source is industrially promising for selective electrosynthesis of high value-added alkenes while inhibiting byproduct alkanes. Although great achievements, their development has remarkably restricted by designing atomically sophisticated electrocatalysts. Here, we reported single-crystalline mesoporous copper nanoplates (meso-Cu PLs) as a robust yet highly efficient electrocatalyst for selective alkene electrosynthesis from transfer semi-hydrogenation reaction of alkyne in H2O. Anisotropic meso-Cu PLs were prepared through a facile epitaxial growth strategy with functional C22H45N(CH3)2-C3H6-SH as concurrent mesopore-forming and structure-controlled surfactant. Different to nonporous Cu counterparts with flat surface, meso-Cu PLs exposed abundant Cu+ sites, which not only stabilized active H* radicals from electrocatalytic H2O splitting without coupling into molecular H2 but also accelerated kinetically the desorption of semi-hydrogenated alkenes. With 4-aminophenylacetylene (4-AP) as the substrate, anisotropic meso-Cu PLs delivered superior electrocatalytic transfer semi-hydrogenation performance with up to 99% of 4-aminostyrene (4-AS) selectivity and 100% of 4-AP conversion as well as good cycle stability (6 cycles). Meanwhile, meso-Cu PLs were electrocatalytically applicable for transfer semi-hydrogenation of various alkynes. This work paved an alternative paradigm for designing robust mesoporous metal electrocatalysts with structurally functional metal sites applied in the selective electrosynthesis of industrially value-added chemicals in H2O.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Room‐temperature Magnetocapacitance Spanning 97 K Hysteresis in Molecular Material An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties. Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing Photoinduced Late‐Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives Front Cover: Interdependence of Support Wettability, Electrodeposition Rate, Sodium Metal Anode and SEI Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1