Simulations of Attosecond Metallization in Quartz and Diamond Probed with Inner-Shell Transient Absorption Spectroscopy.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-23 Epub Date: 2025-01-13 DOI:10.1021/acs.jpca.4c05137
Lucas Kurkowski, Adonay Sissay, Mengqi Yang, Alexander Meyer, Kenneth Lopata
{"title":"Simulations of Attosecond Metallization in Quartz and Diamond Probed with Inner-Shell Transient Absorption Spectroscopy.","authors":"Lucas Kurkowski, Adonay Sissay, Mengqi Yang, Alexander Meyer, Kenneth Lopata","doi":"10.1021/acs.jpca.4c05137","DOIUrl":null,"url":null,"abstract":"<p><p>When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA). In this paper, we present first-principles simulations of ATA based on bulk-mimicking clusters and real-time time-dependent density functional theory (RT-TDDFT), with Koopmans-tuned range-separated hybrid functionals and Gaussian basis sets. Our method gives good agreement with the experiment for the breakdown threshold in silica and diamond. This breakdown voltage corresponds to a Keldysh parameter of approximately one and thus involves a transition to a regime where the dynamics are driven by tunneling. Pumping at an amplitude just below this value causes a mixture of multiphoton and tunneling excitations across the band gap to occur. The computed extreme ultraviolet and X-ray attosecond transient spectra also agree well with the experiment and show a decrease in optical density due to the transient population of the conduction band from the IR field. First-principles approaches such as this are valuable for interpreting the complicated modulations in a spectrum and for guiding future attosecond experiments on solids.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"650-660"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA). In this paper, we present first-principles simulations of ATA based on bulk-mimicking clusters and real-time time-dependent density functional theory (RT-TDDFT), with Koopmans-tuned range-separated hybrid functionals and Gaussian basis sets. Our method gives good agreement with the experiment for the breakdown threshold in silica and diamond. This breakdown voltage corresponds to a Keldysh parameter of approximately one and thus involves a transition to a regime where the dynamics are driven by tunneling. Pumping at an amplitude just below this value causes a mixture of multiphoton and tunneling excitations across the band gap to occur. The computed extreme ultraviolet and X-ray attosecond transient spectra also agree well with the experiment and show a decrease in optical density due to the transient population of the conduction band from the IR field. First-principles approaches such as this are valuable for interpreting the complicated modulations in a spectrum and for guiding future attosecond experiments on solids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用内壳瞬态吸收光谱探测石英和金刚石的瞬时金属化模拟。
当介质被强红外激光脉冲击中时,会发生瞬态金属化。这种金属化背后最初的阿秒动力学尚不完全清楚。因此,需要模拟来理解这一过程,并帮助解释实验观测结果,例如阿秒瞬态吸收(ATA)。本文利用koopmann - tuning range-separated hybrid funcals和Gaussian基集,提出了基于大体积模拟簇和实时时变密度泛函理论(RT-TDDFT)的ATA第一性原理模拟。所得的击穿阈值与实验结果吻合较好。这个击穿电压对应于一个大约为1的Keldysh参数,因此涉及到一个由隧道驱动动力学的过渡状态。在刚好低于这个值的幅值下抽运会导致多光子和隧穿激发的混合穿过带隙。计算的极紫外和x射线阿秒瞬态光谱也与实验结果吻合得很好,并且表明由于红外场导带的瞬态填充导致了光密度的降低。像这样的第一性原理方法对于解释光谱中的复杂调制和指导未来在固体上的阿秒实验是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Bioaerosol Characterization with Vibrational Spectroscopy: Overcoming Fluorescence with Photothermal Infrared (PTIR) Spectroscopy. Density Functional Theory Study on Reconstruction and Reversible Transformation Processes of the ZZ57 Edge Structure in Carbon Materials: Effect of Na, K, and Ca. Infrared Ion Spectroscopy of Gaseous [Cu(2,2'-Bipyridine)3]2+: Investigation of Jahn-Teller Elongation Versus Compression. Resonances in Low-Energy Electron Collisions with Salicylic Acid. Study on Influence of Microwave Electric Field Direction on Evaporation Based on Molecular Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1