{"title":"Spillover of active oxygen intermediates of binary RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> nanowires for highly active and robust acidic oxygen evolution.","authors":"Linqing Liao, Wangyan Gou, Mingkai Zhang, Xiaohe Tan, Zening Qi, Min Xie, Yuanyuan Ma, Yongquan Qu","doi":"10.1039/d4nh00437j","DOIUrl":null,"url":null,"abstract":"<p><p>Over-oxidation of surface ruthenium active sites of RuO<sub><i>x</i></sub>-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm<sup>-2</sup>, a small Tafel slope of 73 mV dec<sup>-1</sup>, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO<sub>2</sub> to Nb<sub>2</sub>O<sub>5</sub> and the subsequent participation of lattice oxygen of Nb<sub>2</sub>O<sub>5</sub> instead of RuO<sub>2</sub> for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00437j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over-oxidation of surface ruthenium active sites of RuOx-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO2/Nb2O5 electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm-2, a small Tafel slope of 73 mV dec-1, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO2 to Nb2O5 and the subsequent participation of lattice oxygen of Nb2O5 instead of RuO2 for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.