Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling.

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2025-01-10 eCollection Date: 2025-01-01 DOI:10.1111/eva.70045
Elena Pazhenkova, Matej Bartol, Barbara Boljte, Urša Fležar, Andrea Gazzola, Tomislav Gomerčić, Marjeta Konec, Ivan Kos, Miha Krofel, Jakub Kubala, Ladislav Paule, Mihai Pop, Hubert Potočnik, Barbara Promberger, Robin Rigg, Teodora Sin, Magda Sindičić, Vedran Slijepčević, Astrid Vik Stronen, Ira Topličanec, Tomaž Skrbinšek
{"title":"Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling.","authors":"Elena Pazhenkova, Matej Bartol, Barbara Boljte, Urša Fležar, Andrea Gazzola, Tomislav Gomerčić, Marjeta Konec, Ivan Kos, Miha Krofel, Jakub Kubala, Ladislav Paule, Mihai Pop, Hubert Potočnik, Barbara Promberger, Robin Rigg, Teodora Sin, Magda Sindičić, Vedran Slijepčević, Astrid Vik Stronen, Ira Topličanec, Tomaž Skrbinšek","doi":"10.1111/eva.70045","DOIUrl":null,"url":null,"abstract":"<p><p>Inbreeding depression poses a severe threat to small populations, leading to the fixation of deleterious mutations and decreased survival probability. While the establishment of natural gene flow between populations is an ideal long-term solution, its practical implementation is often challenging. Reinforcement of populations by translocating individuals from larger populations is a viable strategy for reducing inbreeding, increasing genetic diversity and potentially saving populations from extinction. The Dinaric population of Eurasian lynx (<i>Lynx lynx</i>) has faced high inbreeding levels, with effective inbreeding reaching 0.316 in 2019, endangering the population's survival. To counteract this, population reinforcement was implemented between 2019 and 2023, involving the translocation of 12 individuals from the Carpathian Mountains to the Dinaric Mountains of Slovenia and Croatia. We conducted comprehensive genetic monitoring in this area, gathering 588 non-invasive and tissue samples, which were used for individual identification and estimation of population genetic parameters. We used stochastic modelling to assess the long-term viability of the Dinaric lynx population post-translocation and formulate effective conservation strategies. The model predicts that, despite significant improvement of genetic diversity after translocations, inbreeding will return to critical levels within 45 years. Our results highlight the fact that reinforcement is just the first step and that long-term genetic management is needed to keep the population from sliding back towards extinction. The Dinaric lynx population serves as a compelling example of genetic rescue. The lessons learnt here will be essential for ensuring the viability of the Dinaric lynx in the future and also provide a useful template for conservation of other populations and species facing similar threats.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 1","pages":"e70045"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/eva.70045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inbreeding depression poses a severe threat to small populations, leading to the fixation of deleterious mutations and decreased survival probability. While the establishment of natural gene flow between populations is an ideal long-term solution, its practical implementation is often challenging. Reinforcement of populations by translocating individuals from larger populations is a viable strategy for reducing inbreeding, increasing genetic diversity and potentially saving populations from extinction. The Dinaric population of Eurasian lynx (Lynx lynx) has faced high inbreeding levels, with effective inbreeding reaching 0.316 in 2019, endangering the population's survival. To counteract this, population reinforcement was implemented between 2019 and 2023, involving the translocation of 12 individuals from the Carpathian Mountains to the Dinaric Mountains of Slovenia and Croatia. We conducted comprehensive genetic monitoring in this area, gathering 588 non-invasive and tissue samples, which were used for individual identification and estimation of population genetic parameters. We used stochastic modelling to assess the long-term viability of the Dinaric lynx population post-translocation and formulate effective conservation strategies. The model predicts that, despite significant improvement of genetic diversity after translocations, inbreeding will return to critical levels within 45 years. Our results highlight the fact that reinforcement is just the first step and that long-term genetic management is needed to keep the population from sliding back towards extinction. The Dinaric lynx population serves as a compelling example of genetic rescue. The lessons learnt here will be essential for ensuring the viability of the Dinaric lynx in the future and also provide a useful template for conservation of other populations and species facing similar threats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling. Genomic Introgression Between Critically Endangered and Stable Species of Darwin's Tree Finches on the Galapagos Islands. Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab. Managing Friends and Foes: Sanctioning Mutualists in Mixed-Infection Nodules Trades off With Defense Against Antagonists. Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed (Lemna minor).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1