Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-05-01 Epub Date: 2025-01-08 DOI:10.1016/j.talanta.2025.127528
Jinming Zhang, Jihang Zhang, Jiale Chen, Xiao Zhang, Jinglan Wu, Pengpeng Yang, Fengxia Zou, Hanjie Ying, Wei Zhuang
{"title":"Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.","authors":"Jinming Zhang, Jihang Zhang, Jiale Chen, Xiao Zhang, Jinglan Wu, Pengpeng Yang, Fengxia Zou, Hanjie Ying, Wei Zhuang","doi":"10.1016/j.talanta.2025.127528","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (K<sub>m</sub>) of 34.0 mM and a maximum reaction rate of 5.5 mM min<sup>-1</sup>, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127528"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (Km) of 34.0 mM and a maximum reaction rate of 5.5 mM min-1, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用独特的NP1界面:在由豆豆蛋白a增强的定制PDA/PEI微环境中,通过静电和亲和相互作用定向固定化。
酶固定化技术是提高酶稳定性和催化效率的关键技术。传统的物理吸附和简单的共价结合等方法往往不能维持酶的活性和稳定性。本研究提出了一种创新的多级固定化策略,通过微调表面微环境实现核酸酶P1 (NP1)的高效靶向固定化。分子模拟结果表明,NP1表面独特的静电分布和赖氨酸等碱性氨基酸的特定位置导致多巴胺优先吸附在远离NP1活性位点的区域。这种选择性吸附有利于NP1的定向固定化,而共沉积表面产生的正电荷环境进一步增强了NP1的吸附能力。通过表面表征和酶促测试发现,这种多级修饰明显优化了固定化表面的物理化学环境。该策略大大提高了酶活性(3590.0 U/mg),稳定性和可重复使用性(10个循环后70%)。其中,NP1在该表面的最佳Michaelis常数(Km)为34.0 mM,最大反应速率为5.5 mM min-1,表明该修饰策略在提高酶的催化性能方面效果显著。本研究通过精确调节表面微环境和定向固定策略,为酶催化应用提供了一个高效稳定的固定平台,具有重要的实际应用潜力。这种稳定且可重复使用的NP1平台允许高效的DNA/RNA切割,促进其在工业生物催化,生物医学酶基础工艺和生物传感器中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Cascade-amplification-based electrochemical detection of Akashiwo sanguinea at pre-outbreak stage. Fully printed field-effect transistor humidity sensor with chitosan/polyvinyl alcohol/nano carbon powder for enhanced moisture sensitivity. Lab-created conductive filament based on nickel and graphite particles: An attractive material for the additive manufacture of enhanced electrochemical sensors for non-enzymatic and selective glucose sensing. Near-field and far-field competitive couplings between plasmonic nanodisk array and nanoparticles for rapid and facile heparin assay. An ultrasensitive homogeneous electrochemical strategy for ochratoxin a sensing based on nanoscale PCN-224@MB@Apt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1