Maryam Montaseri, Mansour Rezaei, Armin Khayati, Shayan Mostafaei, Mohammad Taheri
{"title":"Survival parametric modeling for patients with heart failure based on Kernel learning.","authors":"Maryam Montaseri, Mansour Rezaei, Armin Khayati, Shayan Mostafaei, Mohammad Taheri","doi":"10.1186/s12874-024-02455-4","DOIUrl":null,"url":null,"abstract":"<p><p>Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"7"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02455-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.