Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS).
Ramatu Wuni, Katherine Curi-Quinto, Litai Liu, Dianela Espinoza, Anthony I Aquino, Juana Del Valle-Mendoza, Miguel Angel Aguilar-Luis, Claudia Murray, Richard Nunes, Lisa Methven, Julie A Lovegrove, Mary Penny, Marta Favara, Alan Sánchez, Karani Santhanakrishnan Vimaleswaran
{"title":"Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS).","authors":"Ramatu Wuni, Katherine Curi-Quinto, Litai Liu, Dianela Espinoza, Anthony I Aquino, Juana Del Valle-Mendoza, Miguel Angel Aguilar-Luis, Claudia Murray, Richard Nunes, Lisa Methven, Julie A Lovegrove, Mary Penny, Marta Favara, Alan Sánchez, Karani Santhanakrishnan Vimaleswaran","doi":"10.1016/j.clnesp.2024.12.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum insulin, and glycated haemoglobin].</p><p><strong>Methods: </strong>This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known to be associated with cardiometabolic traits at a genome-wide significance level (P < 5 × 10<sup>-8</sup>) were used to construct a genetic risk score (GRS).</p><p><strong>Results: </strong>There were no significant associations between the GRS and any of the cardiometabolic traits. However, a significant interaction was observed between the GRS and carbohydrate intake on HDL-C concentration (P<sub>interaction</sub> = 0.0007). In the first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS (≤37 risk alleles) [Beta = 0.06 mmol/L, 95 % confidence interval (CI), 0.01-0.10; P = 0.018]. In the third tertile of carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration of HDL-C than those with a low GRS (Beta = -0.04 mmol/L, 95 % CI -0.01 to -0.09; P = 0.027). A significant interaction was also observed between the GRS and glycaemic load (GL) on the concentration of HDL-C (P<sub>interaction</sub> = 0.002). For participants with a high GRS, there were lower concentrations of HDL-C across tertiles of GL (P<sub>trend</sub> = 0.017). There was no significant interaction between the GRS and glycaemic index on the concentration of HDL-C, and none of the other GRS∗macronutrient interactions were significant.</p><p><strong>Conclusions: </strong>Our results suggest that young adults who consume a higher carbohydrate diet and have a higher GRS have a lower HDL-C concentration, which in turn is linked to cardiovascular diseases, and indicate that personalised nutrition strategies targeting a reduction in carbohydrate intake might be beneficial for these individuals.</p>","PeriodicalId":10352,"journal":{"name":"Clinical nutrition ESPEN","volume":" ","pages":"83-92"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition ESPEN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.clnesp.2024.12.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum insulin, and glycated haemoglobin].
Methods: This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known to be associated with cardiometabolic traits at a genome-wide significance level (P < 5 × 10-8) were used to construct a genetic risk score (GRS).
Results: There were no significant associations between the GRS and any of the cardiometabolic traits. However, a significant interaction was observed between the GRS and carbohydrate intake on HDL-C concentration (Pinteraction = 0.0007). In the first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS (≤37 risk alleles) [Beta = 0.06 mmol/L, 95 % confidence interval (CI), 0.01-0.10; P = 0.018]. In the third tertile of carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration of HDL-C than those with a low GRS (Beta = -0.04 mmol/L, 95 % CI -0.01 to -0.09; P = 0.027). A significant interaction was also observed between the GRS and glycaemic load (GL) on the concentration of HDL-C (Pinteraction = 0.002). For participants with a high GRS, there were lower concentrations of HDL-C across tertiles of GL (Ptrend = 0.017). There was no significant interaction between the GRS and glycaemic index on the concentration of HDL-C, and none of the other GRS∗macronutrient interactions were significant.
Conclusions: Our results suggest that young adults who consume a higher carbohydrate diet and have a higher GRS have a lower HDL-C concentration, which in turn is linked to cardiovascular diseases, and indicate that personalised nutrition strategies targeting a reduction in carbohydrate intake might be beneficial for these individuals.
期刊介绍:
Clinical Nutrition ESPEN is an electronic-only journal and is an official publication of the European Society for Clinical Nutrition and Metabolism (ESPEN). Nutrition and nutritional care have gained wide clinical and scientific interest during the past decades. The increasing knowledge of metabolic disturbances and nutritional assessment in chronic and acute diseases has stimulated rapid advances in design, development and clinical application of nutritional support. The aims of ESPEN are to encourage the rapid diffusion of knowledge and its application in the field of clinical nutrition and metabolism. Published bimonthly, Clinical Nutrition ESPEN focuses on publishing articles on the relationship between nutrition and disease in the setting of basic science and clinical practice. Clinical Nutrition ESPEN is available to all members of ESPEN and to all subscribers of Clinical Nutrition.