A dataset of blood slide images for AI-based diagnosis of malaria

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2025-02-01 DOI:10.1016/j.dib.2024.111190
Rose Nakasi , Joyce Nakatumba Nabende , Jeremy Francis Tusubira , Aloyzius Lubowa Bamundaga , Alfred Andama
{"title":"A dataset of blood slide images for AI-based diagnosis of malaria","authors":"Rose Nakasi ,&nbsp;Joyce Nakatumba Nabende ,&nbsp;Jeremy Francis Tusubira ,&nbsp;Aloyzius Lubowa Bamundaga ,&nbsp;Alfred Andama","doi":"10.1016/j.dib.2024.111190","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria is a major public health challenge in sub-Saharan Africa. Timely and accurate diagnosis of malaria is vital to reduce the caseload and mortality rates associated with malaria<strong>.</strong> The use of microscopy in malaria screening is the gold standard recommended method by the World Health Organisation (WHO). In Uganda, utilization of microscopy is challenged by insufficient expertise to interpret the images accurately, affecting the efficiency, effectiveness and accuracy of malaria detection and diagnosis. We present a benchmark dataset of thick and thin blood smear images for automatic malaria screening in Uganda. Mobile Microscopy data was collected from Mulago Hospital, Department of Internal Medicine, Makerere University and Kiruddu National Referral Hospital in Uganda. The labelled image data can be used to build computational models implemented with convolution neural networks. The dataset has 3000 labelled thick blood smear images and 1000 labelled thin blood smear images. The datasets will support robust and accurate deep learning models for malaria diagnosis using thick and thin blood smear images with reasonable detection accuracies.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111190"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924011521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria is a major public health challenge in sub-Saharan Africa. Timely and accurate diagnosis of malaria is vital to reduce the caseload and mortality rates associated with malaria. The use of microscopy in malaria screening is the gold standard recommended method by the World Health Organisation (WHO). In Uganda, utilization of microscopy is challenged by insufficient expertise to interpret the images accurately, affecting the efficiency, effectiveness and accuracy of malaria detection and diagnosis. We present a benchmark dataset of thick and thin blood smear images for automatic malaria screening in Uganda. Mobile Microscopy data was collected from Mulago Hospital, Department of Internal Medicine, Makerere University and Kiruddu National Referral Hospital in Uganda. The labelled image data can be used to build computational models implemented with convolution neural networks. The dataset has 3000 labelled thick blood smear images and 1000 labelled thin blood smear images. The datasets will support robust and accurate deep learning models for malaria diagnosis using thick and thin blood smear images with reasonable detection accuracies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于疟疾人工智能诊断的血玻片图像数据集。
疟疾是撒哈拉以南非洲的一项重大公共卫生挑战。及时和准确诊断疟疾对于减少疟疾病例和与疟疾有关的死亡率至关重要。在疟疾筛查中使用显微镜是世界卫生组织(WHO)推荐的金标准方法。在乌干达,由于缺乏准确解释图像的专门知识,显微镜的使用受到挑战,影响了疟疾检测和诊断的效率、效力和准确性。我们提出了一个基准数据集的厚和薄血液涂片图像自动疟疾筛查在乌干达。移动显微镜数据收集自乌干达的Mulago医院、内科、Makerere大学和Kiruddu国家转诊医院。标记后的图像数据可以用来建立卷积神经网络实现的计算模型。该数据集有3000个标记的厚血涂片图像和1000个标记的薄血涂片图像。这些数据集将支持稳健和准确的深度学习模型,用于使用具有合理检测精度的厚血涂片和薄血涂片图像进行疟疾诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Maternal health risk factors dataset: Clinical parameters and insights from rural Bangladesh Dataset of vocabulary in Uzbek primary education: Extraction and analysis in case of the school corpus CoAt-Set: Transformed coordinated attack dataset for collaborative intrusion detection simulation Data on hydrodynamic flow and aspiration mechanisms in a patient-specific pharyngolaryngeal model with variable epiglottis angles Dataset and analysis of automated and manual methods to differentiate wide QRS complex tachycardias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1