Implementation of memristive emotion associative learning circuit.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI:10.1007/s11571-024-10211-z
Zhangzhi Zhou, Mi Lin, Xuanxuan Zhou, Chong Zhang
{"title":"Implementation of memristive emotion associative learning circuit.","authors":"Zhangzhi Zhou, Mi Lin, Xuanxuan Zhou, Chong Zhang","doi":"10.1007/s11571-024-10211-z","DOIUrl":null,"url":null,"abstract":"<p><p>Psychological studies have demonstrated that the music can affect memory by triggering different emotions. Building on the relationships among music, emotion, and memory, a memristor-based emotion associative learning circuit is designed by utilizing the nonlinear and non-volatile characteristics of memristors, which includes a music judgment module, three emotion generation modules, three emotional homeostasis modules, and a memory module to implement functions such as learning, second learning, forgetting, emotion generation, and emotional homeostasis. The experimental results indicate that the proposed circuit can simulate the learning and forgetting processes of human under different music circumstances, demonstrate the feasibility of memristors in biomimetic circuits, verify the impact of music on memory, and provide a foundation for in-depth research and application development of the interaction mechanism between emotion and memory.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"13"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10211-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Psychological studies have demonstrated that the music can affect memory by triggering different emotions. Building on the relationships among music, emotion, and memory, a memristor-based emotion associative learning circuit is designed by utilizing the nonlinear and non-volatile characteristics of memristors, which includes a music judgment module, three emotion generation modules, three emotional homeostasis modules, and a memory module to implement functions such as learning, second learning, forgetting, emotion generation, and emotional homeostasis. The experimental results indicate that the proposed circuit can simulate the learning and forgetting processes of human under different music circumstances, demonstrate the feasibility of memristors in biomimetic circuits, verify the impact of music on memory, and provide a foundation for in-depth research and application development of the interaction mechanism between emotion and memory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆性情感联想学习电路的实现。
心理学研究表明,音乐可以通过引发不同的情绪来影响记忆。基于音乐、情感和记忆之间的关系,利用记忆电阻器的非线性和非易失性,设计了基于记忆电阻器的情感联想学习电路,该电路包括一个音乐判断模块、三个情感产生模块、三个情感稳态模块和一个记忆模块,实现了学习、二次学习、遗忘、情感产生和情感稳态等功能。实验结果表明,所设计的电路能够模拟人类在不同音乐环境下的学习和遗忘过程,验证了记忆电阻器在仿生电路中的可行性,验证了音乐对记忆的影响,为情感与记忆相互作用机制的深入研究和应用开发提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1