Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome.

IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European Heart Journal Pub Date : 2025-01-13 DOI:10.1093/eurheartj/ehae880
Zeineb Bouzid, Ervin Sejdic, Christian Martin-Gill, Ziad Faramand, Stephanie Frisch, Mohammad Alrawashdeh, Stephanie Helman, Tanmay A Gokhale, Nathan T Riek, Karina Kraevsky-Phillips, Richard E Gregg, Susan M Sereika, Gilles Clermont, Murat Akcakaya, Jessica K Zègre-Hemsey, Samir Saba, Clifton W Callaway, Salah S Al-Zaiti
{"title":"Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome.","authors":"Zeineb Bouzid, Ervin Sejdic, Christian Martin-Gill, Ziad Faramand, Stephanie Frisch, Mohammad Alrawashdeh, Stephanie Helman, Tanmay A Gokhale, Nathan T Riek, Karina Kraevsky-Phillips, Richard E Gregg, Susan M Sereika, Gilles Clermont, Murat Akcakaya, Jessica K Zègre-Hemsey, Samir Saba, Clifton W Callaway, Salah S Al-Zaiti","doi":"10.1093/eurheartj/ehae880","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.</p><p><strong>Methods: </strong>This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score.</p><p><strong>Results: </strong>The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75-5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35-9.74)] and high [odds ratio 6.12 (2.38-15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group.</p><p><strong>Conclusions: </strong>The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehae880","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.

Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score.

Results: The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75-5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35-9.74)] and high [odds ratio 6.12 (2.38-15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group.

Conclusions: The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Heart Journal
European Heart Journal 医学-心血管系统
CiteScore
39.30
自引率
6.90%
发文量
3942
审稿时长
1 months
期刊介绍: The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters. In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.
期刊最新文献
Exercise type and settings, quality of life, and mental health in coronary artery disease: a network meta-analysis. Using artificial intelligence to spot heart failure from ECGs: is it prime time? Artificial intelligence and mortality prediction in acute coronary syndromes. Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome. Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1