Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2025-01-10 DOI:10.1016/j.ymthe.2025.01.006
Haibin Zhou, Jiajing Dai, Dong Li, Luyao Wang, Meng Ye, Xiaoling Hu, Joseph LoTurco, Ji Hu, Wenzhi Sun
{"title":"Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.","authors":"Haibin Zhou, Jiajing Dai, Dong Li, Luyao Wang, Meng Ye, Xiaoling Hu, Joseph LoTurco, Ji Hu, Wenzhi Sun","doi":"10.1016/j.ymthe.2025.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells. Using gDAM, we successfully co-deliver the PiggyBac (PB) transposon and the CRISPR/Cas9 system to induce long-term overexpression of the oncogene EGFRvIII and knockout of tumor suppressor genes Nf1, Pten, and Trp53 in astrocytes, leading to the development of astrocyte-derived gliomas in immunocompetent mice. Furthermore, gDAM facilitates the delivery of naked DNA to peripheral glioma astrocytes. The overexpression of interferon-β (IFN-β) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in these peripheral glioma astrocytes significantly prolongs the overall survival of mice bearing 73C glioma cells. This approach offers a new perspective on developing gene delivery systems that specifically target astrocytes to meet the varied needs of both research and gene therapy. The innovative strategy behind gDAM is expected to provide fresh inspiration in the quest for DNA delivery to other tissues, such as skeletal muscle and skin.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells. Using gDAM, we successfully co-deliver the PiggyBac (PB) transposon and the CRISPR/Cas9 system to induce long-term overexpression of the oncogene EGFRvIII and knockout of tumor suppressor genes Nf1, Pten, and Trp53 in astrocytes, leading to the development of astrocyte-derived gliomas in immunocompetent mice. Furthermore, gDAM facilitates the delivery of naked DNA to peripheral glioma astrocytes. The overexpression of interferon-β (IFN-β) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in these peripheral glioma astrocytes significantly prolongs the overall survival of mice bearing 73C glioma cells. This approach offers a new perspective on developing gene delivery systems that specifically target astrocytes to meet the varied needs of both research and gene therapy. The innovative strategy behind gDAM is expected to provide fresh inspiration in the quest for DNA delivery to other tissues, such as skeletal muscle and skin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Pancreatic cancer-derived extracellular vesicles remodel the tumor microenvironment and enhance chemoresistance by delivering KRASG12D protein to cancer-associated fibroblasts. A new era of Molecular Therapy: My vision for the future of the journal as the incoming Editor-in-Chief. Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD. Characterization of a novel conditional knockout mouse model to assess efficacy of mRNA therapy in the context of severe ornithine transcarbamylase deficiency. Depletion of alloreactive B cells by drug- resistant chimeric alloantigen receptor T cells to prevent transplant rejection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1