High-throughput evaluation of half-metallicity of Co2MnSi Heusler alloys using composition-spread films and spin-integrated hard X-ray photoelectron spectroscopy.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2024.2439781
Ryo Toyama, Shunsuke Tsuda, Yuma Iwasaki, Thang Dinh Phan, Susumu Yamamoto, Hiroyuki Yamane, Koichiro Yaji, Yuya Sakuraba
{"title":"High-throughput evaluation of half-metallicity of Co<sub>2</sub>MnSi Heusler alloys using composition-spread films and spin-integrated hard X-ray photoelectron spectroscopy.","authors":"Ryo Toyama, Shunsuke Tsuda, Yuma Iwasaki, Thang Dinh Phan, Susumu Yamamoto, Hiroyuki Yamane, Koichiro Yaji, Yuya Sakuraba","doi":"10.1080/14686996.2024.2439781","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate high-throughput evaluation of the half-metallicity of Co<sub>2</sub>MnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co<sub>75-<i>x</i></sub> Mn <sub><i>x</i></sub> Si<sub>25</sub> composition-spread thin films for <i>x</i> = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The <i>L</i>2<sub>1</sub>-ordering and (001)-oriented epitaxial growth of Co<sub>2</sub>MnSi are confirmed by X-ray diffraction for <i>x</i> = 18-40%. The valence band HAXPES spectra exhibit a systematic compositional dependence and the smallest photoemission intensity at the Fermi level (<i>E</i> <sub>F</sub>) for a slightly Mn-rich composition of <i>x</i> = 27%. The density of states (DOS) for <i>L</i>2<sub>1</sub>-ordered Co<sub>2</sub>MnSi with different Mn compositions obtained from first-principles calculation also show the smallest total DOS at <i>E</i> <sub>F</sub> for <i>x</i> = 27% because of the formation of a clear half-metallic gap in the minority spin channel and the less localized <i>d</i>-states in the majority spin channel, indicating the best half-metallic nature of this composition. Our experimental results demonstrate that high-throughput evaluation of half-metallicity is possible even with spin-integrated HAXPES by capturing systematic changes in the electronic structures through the measurements on the composition-spread film. Moreover, the anisotropic magnetoresistance (AMR) of the composition-spread film is measured for electric current directions along the [110] and [100] of Co<sub>2</sub>MnSi. Previous studies indicated that a larger negative AMR ratio is a signature of a higher spin polarization. The largest negative AMR ratio is observed for <i>x</i> = 27% for both current directions, which also supports the best half-metallicity for this off-stoichiometric composition.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2439781"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2439781","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate high-throughput evaluation of the half-metallicity of Co2MnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co75-x Mn x Si25 composition-spread thin films for x = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The L21-ordering and (001)-oriented epitaxial growth of Co2MnSi are confirmed by X-ray diffraction for x = 18-40%. The valence band HAXPES spectra exhibit a systematic compositional dependence and the smallest photoemission intensity at the Fermi level (E F) for a slightly Mn-rich composition of x = 27%. The density of states (DOS) for L21-ordered Co2MnSi with different Mn compositions obtained from first-principles calculation also show the smallest total DOS at E F for x = 27% because of the formation of a clear half-metallic gap in the minority spin channel and the less localized d-states in the majority spin channel, indicating the best half-metallic nature of this composition. Our experimental results demonstrate that high-throughput evaluation of half-metallicity is possible even with spin-integrated HAXPES by capturing systematic changes in the electronic structures through the measurements on the composition-spread film. Moreover, the anisotropic magnetoresistance (AMR) of the composition-spread film is measured for electric current directions along the [110] and [100] of Co2MnSi. Previous studies indicated that a larger negative AMR ratio is a signature of a higher spin polarization. The largest negative AMR ratio is observed for x = 27% for both current directions, which also supports the best half-metallicity for this off-stoichiometric composition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
High-throughput evaluation of half-metallicity of Co2MnSi Heusler alloys using composition-spread films and spin-integrated hard X-ray photoelectron spectroscopy. Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1