Enhancement of renal fibrosis in PHF20 transgenic mice.

IF 1.6 4区 医学 Q4 TOXICOLOGY Toxicological Research Pub Date : 2024-12-06 eCollection Date: 2025-01-01 DOI:10.1007/s43188-024-00268-7
Uijin Juang, Soohyeon Lee, Suhwan Gwon, Woohyeong Jung, Huonggiang Nguyen, Qingzhi Huang, Beomwoo Lee, So Hee Kwon, Seon-Hwan Kim, In Soo Kim, Jongsun Park
{"title":"Enhancement of renal fibrosis in PHF20 transgenic mice.","authors":"Uijin Juang, Soohyeon Lee, Suhwan Gwon, Woohyeong Jung, Huonggiang Nguyen, Qingzhi Huang, Beomwoo Lee, So Hee Kwon, Seon-Hwan Kim, In Soo Kim, Jongsun Park","doi":"10.1007/s43188-024-00268-7","DOIUrl":null,"url":null,"abstract":"<p><p>Plant homeodomain finger protein 20 (PHF20) plays a crucial role in various biological processes, but its involvement in renal fibrosis remains unclear. This study investigated the role of PHF20 in renal fibrosis using a unilateral ureteral obstruction (UUO) mouse model, a widely accepted model for chronic kidney disease. PHF20 transgenic (PHF20-TG) and wild-type (WT) mice were utilized to explore how PHF20 influences renal inflammation and fibrosis. After UUO surgery, serum analysis revealed elevated creatinine levels and increased inflammatory markers, indicating worsened renal function in PHF20-TG mice. Histological analyses, including H&E, PAS, and Sirius Red staining, confirmed significant tissue damage and fibrosis in the PHF20-TG group. Molecular investigations demonstrated enhanced activation of the TGF-β/SMAD2/3 and NF-κB signaling pathways, both of which are crucial in the progression of renal fibrosis. Our findings suggest that PHF20 overexpression accelerates early-stage renal fibrosis by amplifying inflammatory responses and promoting collagen deposition. This indicates that PHF20 expression could serve as an early marker for renal fibrosis progression.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 1","pages":"71-80"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-024-00268-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant homeodomain finger protein 20 (PHF20) plays a crucial role in various biological processes, but its involvement in renal fibrosis remains unclear. This study investigated the role of PHF20 in renal fibrosis using a unilateral ureteral obstruction (UUO) mouse model, a widely accepted model for chronic kidney disease. PHF20 transgenic (PHF20-TG) and wild-type (WT) mice were utilized to explore how PHF20 influences renal inflammation and fibrosis. After UUO surgery, serum analysis revealed elevated creatinine levels and increased inflammatory markers, indicating worsened renal function in PHF20-TG mice. Histological analyses, including H&E, PAS, and Sirius Red staining, confirmed significant tissue damage and fibrosis in the PHF20-TG group. Molecular investigations demonstrated enhanced activation of the TGF-β/SMAD2/3 and NF-κB signaling pathways, both of which are crucial in the progression of renal fibrosis. Our findings suggest that PHF20 overexpression accelerates early-stage renal fibrosis by amplifying inflammatory responses and promoting collagen deposition. This indicates that PHF20 expression could serve as an early marker for renal fibrosis progression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强 PHF20 转基因小鼠的肾脏纤维化。
植物同源结构域指蛋白20 (PHF20)在多种生物过程中起着至关重要的作用,但其在肾纤维化中的作用尚不清楚。本研究通过单侧输尿管梗阻(UUO)小鼠模型研究了PHF20在肾纤维化中的作用,UUO是一种被广泛接受的慢性肾脏疾病模型。利用PHF20转基因(PHF20- tg)和野生型(WT)小鼠,探讨PHF20对肾脏炎症和纤维化的影响。UUO手术后,血清分析显示肌酐水平升高,炎症标志物增加,表明PHF20-TG小鼠肾功能恶化。组织学分析,包括H&E、PAS和天狼星红染色,证实PHF20-TG组有明显的组织损伤和纤维化。分子研究表明,TGF-β/SMAD2/3和NF-κB信号通路的激活增强,这两个信号通路在肾纤维化的进展中都是至关重要的。我们的研究结果表明,PHF20过表达通过放大炎症反应和促进胶原沉积来加速早期肾纤维化。这表明PHF20的表达可以作为肾纤维化进展的早期标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
4.30%
发文量
39
期刊介绍: Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.
期刊最新文献
Quinine inhibits myogenic differentiation by disrupting AKT signaling pathway. Enhancement of renal fibrosis in PHF20 transgenic mice. Exploring the various functions of PHD finger protein 20: beyond the unknown. Imatinib mesylate promotes melanogenesis through the modulation of p38 and MITF in murine cells. Rocaglamide-A mitigates LPS-induced hepatic inflammation by modulating JNK/AP-1 signaling cascade and ROS production in hepatocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1