Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-01-13 DOI:10.1186/s12964-024-02010-0
Yu-Chin Liu, Tsung-Jen Lin, Kowit-Yu Chong, Guan-Ying Chen, Chia-Yu Kuo, Yi-Yun Lin, Chia-Wei Chang, Ting-Feng Hsiao, Chih-Liang Wang, Yo-Chen Shih, Chia-Jung Yu
{"title":"Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.","authors":"Yu-Chin Liu, Tsung-Jen Lin, Kowit-Yu Chong, Guan-Ying Chen, Chia-Yu Kuo, Yi-Yun Lin, Chia-Wei Chang, Ting-Feng Hsiao, Chih-Liang Wang, Yo-Chen Shih, Chia-Jung Yu","doi":"10.1186/s12964-024-02010-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies. Previously, we reported an unconventional role for the Golgi tethering factor golgin-97 in inhibiting breast cell motility, and its downregulation was associated with poor patient prognosis. However, the specific role and regulatory mechanism of golgin-97 in cancer progression in vivo remain unclear.</p><p><strong>Methods: </strong>We integrated genetic knockout (KO) of golgin-97, animal models (zebrafish and xenograft mice), multi-omics analysis (next-generation sequencing and proteomics), bioinformatics analysis, and kinase inhibitor treatment to evaluate the effects of golgin-97 KO in triple-negative breast cancer cells. Gene knockdown and kinase inhibitor treatment followed by qRT‒PCR, Western blotting, cell viability, migration, and cytotoxicity assays were performed to elucidate the mechanisms of golgin-97 KO-mediated cancer invasion. A xenograft mouse model was used to investigate cancer progression and drug therapy.</p><p><strong>Results: </strong>We demonstrated that golgin-97 KO promoted breast cell metastasis in zebrafish and xenograft mouse models. Multi-omics analysis revealed that the Wnt signaling pathway, MAPK kinase cascades, and inflammatory cytokines are involved in golgin-97 KO-induced breast cancer progression. Targeting the ERK1/2 and p38 MAPK pathways effectively attenuated golgin-97-induced cancer cell migration, reduced the expression of inflammatory mediators, and enhanced the chemotherapeutic effect of paclitaxel in vitro and in vivo. Specifically, compared with the paclitaxel regimen, the combination of ERK1/2 and p38 MAPK inhibitors significantly prevented lung metastasis and lung injury. We further demonstrated that hypoxia is a physiological condition that reduces golgin-97 expression in cancer, revealing a novel and potential feedback loop between ERK/MAPK signaling and golgin-97.</p><p><strong>Conclusion: </strong>Our results collectively support a novel regulatory role of golgin-97 in ERK/MAPK signaling and the tumor microenvironment, possibly providing new insights for anti-breast cancer drug development.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"22"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-02010-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies. Previously, we reported an unconventional role for the Golgi tethering factor golgin-97 in inhibiting breast cell motility, and its downregulation was associated with poor patient prognosis. However, the specific role and regulatory mechanism of golgin-97 in cancer progression in vivo remain unclear.

Methods: We integrated genetic knockout (KO) of golgin-97, animal models (zebrafish and xenograft mice), multi-omics analysis (next-generation sequencing and proteomics), bioinformatics analysis, and kinase inhibitor treatment to evaluate the effects of golgin-97 KO in triple-negative breast cancer cells. Gene knockdown and kinase inhibitor treatment followed by qRT‒PCR, Western blotting, cell viability, migration, and cytotoxicity assays were performed to elucidate the mechanisms of golgin-97 KO-mediated cancer invasion. A xenograft mouse model was used to investigate cancer progression and drug therapy.

Results: We demonstrated that golgin-97 KO promoted breast cell metastasis in zebrafish and xenograft mouse models. Multi-omics analysis revealed that the Wnt signaling pathway, MAPK kinase cascades, and inflammatory cytokines are involved in golgin-97 KO-induced breast cancer progression. Targeting the ERK1/2 and p38 MAPK pathways effectively attenuated golgin-97-induced cancer cell migration, reduced the expression of inflammatory mediators, and enhanced the chemotherapeutic effect of paclitaxel in vitro and in vivo. Specifically, compared with the paclitaxel regimen, the combination of ERK1/2 and p38 MAPK inhibitors significantly prevented lung metastasis and lung injury. We further demonstrated that hypoxia is a physiological condition that reduces golgin-97 expression in cancer, revealing a novel and potential feedback loop between ERK/MAPK signaling and golgin-97.

Conclusion: Our results collectively support a novel regulatory role of golgin-97 in ERK/MAPK signaling and the tumor microenvironment, possibly providing new insights for anti-breast cancer drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Signal integrator function of CXXC5 in Cancer. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1