QOMIC: quantum optimization for motif identification.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-12-24 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae208
Hoang M Ngo, Tamim Khatib, My T Thai, Tamer Kahveci
{"title":"QOMIC: quantum optimization for motif identification.","authors":"Hoang M Ngo, Tamim Khatib, My T Thai, Tamer Kahveci","doi":"10.1093/bioadv/vbae208","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers. In this article, we develop the first quantum solution, called QOMIC (Quantum Optimization for Motif IdentifiCation), to the MI problem. QOMIC transforms the MI problem using a integer model, which serves as the foundation to develop our quantum solution. We develop and implement the quantum circuit to find motif locations in the given network using this model.</p><p><strong>Results: </strong>Our experiments demonstrate that QOMIC outperforms the existing solutions developed for the classical computer, in term of motif counts. We also observe that QOMIC can efficiently find motifs in human regulatory networks associated with five neurodegenerative diseases: Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Motor Neurone Disease.</p><p><strong>Availability and implementation: </strong>Our implementation can be found in https://github.com/ngominhhoang/Quantum-Motif-Identification.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae208"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers. In this article, we develop the first quantum solution, called QOMIC (Quantum Optimization for Motif IdentifiCation), to the MI problem. QOMIC transforms the MI problem using a integer model, which serves as the foundation to develop our quantum solution. We develop and implement the quantum circuit to find motif locations in the given network using this model.

Results: Our experiments demonstrate that QOMIC outperforms the existing solutions developed for the classical computer, in term of motif counts. We also observe that QOMIC can efficiently find motifs in human regulatory networks associated with five neurodegenerative diseases: Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Motor Neurone Disease.

Availability and implementation: Our implementation can be found in https://github.com/ngominhhoang/Quantum-Motif-Identification.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QOMIC:用于图案识别的量子优化。
动机:网络基序识别(Network motif identification, MI)问题旨在寻找生物网络中的拓扑模式。使用经典计算机识别不相交母题是一个具有计算挑战性的问题。量子计算机能够解决经典计算机无法扩展的高复杂性问题。在本文中,我们开发了第一个量子解决方案,称为QOMIC(量子优化的Motif识别),以MI问题。QOMIC使用整数模型来转换MI问题,这是我们开发量子解决方案的基础。我们利用这个模型开发并实现了在给定网络中寻找基序位置的量子电路。结果:我们的实验表明,在基序计数方面,QOMIC优于传统计算机开发的现有解决方案。我们还观察到QOMIC可以有效地找到与五种神经退行性疾病相关的人类调控网络中的基元:阿尔茨海默病、帕金森病、亨廷顿病、肌萎缩侧索硬化症和运动神经元病。可用性和实现:我们的实现可以在https://github.com/ngominhhoang/Quantum-Motif-Identification.git中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
SpaFlow: a Nextflow pipeline for QC and clustering of MxIF datasets. easyEWAS: a flexible and user-friendly R package for epigenome-wide association study. CRIBAR: a fast and flexible sgRNA design tool for CRISPR imaging. PPIXpress and PPICompare webservers infer condition-specific and differential PPI networks. Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1