System identification and fault reconstruction in solar plants via extended Kalman filter-based training of recurrent neural networks.

Sara Ruiz-Moreno, Alberto Bemporad, Antonio Javier Gallego, Eduardo Fernández Camacho
{"title":"System identification and fault reconstruction in solar plants via extended Kalman filter-based training of recurrent neural networks.","authors":"Sara Ruiz-Moreno, Alberto Bemporad, Antonio Javier Gallego, Eduardo Fernández Camacho","doi":"10.1016/j.isatra.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults. The parameters are used independently to estimate the system output, and the type of fault is isolated based on the estimation errors using another feedforward neural network. To evaluate the effectiveness of the methodology, simulations are conducted on a loop of the ACUREX plant with irradiances from sunny and cloudy days. The results reveal a fault classification accuracy of approximately 90% and a fault reconstruction error below 3%, with even better accuracies in the cloudy dataset than in the sunny dataset.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults. The parameters are used independently to estimate the system output, and the type of fault is isolated based on the estimation errors using another feedforward neural network. To evaluate the effectiveness of the methodology, simulations are conducted on a loop of the ACUREX plant with irradiances from sunny and cloudy days. The results reveal a fault classification accuracy of approximately 90% and a fault reconstruction error below 3%, with even better accuracies in the cloudy dataset than in the sunny dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卡尔曼滤波的递归神经网络的系统辨识与故障重建。
本文提出使用扩展卡尔曼滤波器(EKF)进行循环神经网络(RNN)训练和抛物面槽式太阳能发电厂的故障估计。第一步是使用 RNN 对系统进行建模。考虑到集热器中故障可辨性的挑战,采用并行 EKF 来重建故障参数。这些参数被独立用于估算系统输出,并根据估算误差使用另一个前馈神经网络隔离故障类型。为了评估该方法的有效性,对 ACUREX 工厂的一个环路进行了模拟,模拟了晴天和阴天的辐照度。结果显示,故障分类准确率约为 90%,故障重建误差低于 3%,阴天数据集的准确率甚至高于晴天数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Event-triggered adaptive compensation control for stochastic nonlinear systems with multiple failures: An improved switching threshold strategy. A novel voltage control system based on deep neural networks for MicroGrids including communication delay as a complex and large-scale system. Improved approximation-free control for the leader-follower tracking of the multi-agent systems with disturbance and unknown nonlinearity. Diagnostic-constrained fault-tolerant control of bi-directional AGV transport systems with fault-prone sensors. Mode switching control of independent metering fluid power systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1