Marco Polverini;Antonio Cianfrani;Tommaso Caiazzi;Mariano Scazzariello
{"title":"SRv6 Meets DetNet: A New Behavior for Low Latency and High Reliability","authors":"Marco Polverini;Antonio Cianfrani;Tommaso Caiazzi;Mariano Scazzariello","doi":"10.1109/JSAC.2025.3528806","DOIUrl":null,"url":null,"abstract":"The rise of new applications, such as interactive remote presence, online gaming, and video-assisted remote control of industrial machinery, necessitates enhanced requirements in terms of throughput and delay stability. Many efforts have been made to address these needs, with Deterministic Networking (DetNet) being one such initiative. DetNet aims to guarantee delivery with low latency and minimal jitter, ensuring high reliability and performance for time-sensitive applications. However, DetNet applicability in real-world scenarios is limited due to the need of a lower-layer protocol supporting resource reservation procedures (e.g., MPLS), and the lack of publicly available implementations. In this work, we present SRv6 Live-Live, an easy-to-deploy and highly scalable implementation of DetNet functions using the Segment Routing over IPv6 (SRv6) model. The SRv6 Live-Live behavior replicates packets of a selected flow across multiple paths at the ingress of the SRv6 domain and drops redundant replicas at the egress. After discussing insights about the paths’ selection strategy, we provide a SRv6 Live-Live implementation for programmable data planes using P4. We also propose the use of SRv6 Live-Live for best path selection at line rate, in SD-WAN scenarios. The main results obtained in the extensive performance evaluation are that SRv6 Live-Live preserves the throughput in case of congestion and reduces the tail end-to-end delay with a marginal impact on best-effort flows.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 2","pages":"448-458"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839229/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of new applications, such as interactive remote presence, online gaming, and video-assisted remote control of industrial machinery, necessitates enhanced requirements in terms of throughput and delay stability. Many efforts have been made to address these needs, with Deterministic Networking (DetNet) being one such initiative. DetNet aims to guarantee delivery with low latency and minimal jitter, ensuring high reliability and performance for time-sensitive applications. However, DetNet applicability in real-world scenarios is limited due to the need of a lower-layer protocol supporting resource reservation procedures (e.g., MPLS), and the lack of publicly available implementations. In this work, we present SRv6 Live-Live, an easy-to-deploy and highly scalable implementation of DetNet functions using the Segment Routing over IPv6 (SRv6) model. The SRv6 Live-Live behavior replicates packets of a selected flow across multiple paths at the ingress of the SRv6 domain and drops redundant replicas at the egress. After discussing insights about the paths’ selection strategy, we provide a SRv6 Live-Live implementation for programmable data planes using P4. We also propose the use of SRv6 Live-Live for best path selection at line rate, in SD-WAN scenarios. The main results obtained in the extensive performance evaluation are that SRv6 Live-Live preserves the throughput in case of congestion and reduces the tail end-to-end delay with a marginal impact on best-effort flows.