On Testing and Learning Quantum Junta Channels

Zongbo Bao;Penghui Yao
{"title":"On Testing and Learning Quantum Junta Channels","authors":"Zongbo Bao;Penghui Yao","doi":"10.1109/TPAMI.2025.3528648","DOIUrl":null,"url":null,"abstract":"We consider the problems of testing and learning quantum <inline-formula><tex-math>$k$</tex-math></inline-formula>-junta channels, which are <inline-formula><tex-math>$n$</tex-math></inline-formula>-qubit to <inline-formula><tex-math>$n$</tex-math></inline-formula>-qubit quantum channels acting non-trivially on at most <inline-formula><tex-math>$k$</tex-math></inline-formula> out of <inline-formula><tex-math>$n$</tex-math></inline-formula> qubits and leaving the rest of qubits unchanged. We show the following. 1) An <inline-formula><tex-math>$O(k)$</tex-math></inline-formula>-query algorithm to distinguish whether the given channel is <inline-formula><tex-math>$k$</tex-math></inline-formula>-junta channel or is <i>far</i> from any <inline-formula><tex-math>$k$</tex-math></inline-formula>-junta channels, and a lower bound <inline-formula><tex-math>$\\Omega (\\sqrt{k})$</tex-math></inline-formula> on the number of queries and 2) An <inline-formula><tex-math>$\\widetilde{O}( 4^{k} )$</tex-math></inline-formula>-query algorithm to learn a <inline-formula><tex-math>$k$</tex-math></inline-formula>-junta channel, and a lower bound <inline-formula><tex-math>$\\Omega ( 4^{k}/k )$</tex-math></inline-formula> on the number of queries. This partially answers an open problem raised by (Chen et al. 2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in (Montanaro and Osborne, 2010). The distance metric we consider in this paper is obtained by Fourier analysis, which is essentially the L2-distance between Choi representations. Besides, we introduce <small>Influence-Sample</small> to replace <small>Fourier-Sample</small> proposed in(Atici and Servedio, 2007). Our <small>Influence-Sample</small> includes only single-qubit operations and results in only constant-factor decrease in efficiency.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2991-3002"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839063/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problems of testing and learning quantum $k$-junta channels, which are $n$-qubit to $n$-qubit quantum channels acting non-trivially on at most $k$ out of $n$ qubits and leaving the rest of qubits unchanged. We show the following. 1) An $O(k)$-query algorithm to distinguish whether the given channel is $k$-junta channel or is far from any $k$-junta channels, and a lower bound $\Omega (\sqrt{k})$ on the number of queries and 2) An $\widetilde{O}( 4^{k} )$-query algorithm to learn a $k$-junta channel, and a lower bound $\Omega ( 4^{k}/k )$ on the number of queries. This partially answers an open problem raised by (Chen et al. 2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in (Montanaro and Osborne, 2010). The distance metric we consider in this paper is obtained by Fourier analysis, which is essentially the L2-distance between Choi representations. Besides, we introduce Influence-Sample to replace Fourier-Sample proposed in(Atici and Servedio, 2007). Our Influence-Sample includes only single-qubit operations and results in only constant-factor decrease in efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于测试和学习量子君子信道
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1