Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genome research Pub Date : 2025-01-14 DOI:10.1101/gr.279372.124
Yujie Chen, Yiran Hou, Qinglin Zeng, Irene Wang, Meiru Shang, Kwangdeok Shin, Christopher Hemauer, Xiaoyun Xing, Junsu Kang, Guoyan Zhao, Ting Wang
{"title":"Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution","authors":"Yujie Chen, Yiran Hou, Qinglin Zeng, Irene Wang, Meiru Shang, Kwangdeok Shin, Christopher Hemauer, Xiaoyun Xing, Junsu Kang, Guoyan Zhao, Ting Wang","doi":"10.1101/gr.279372.124","DOIUrl":null,"url":null,"abstract":"Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"36 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279372.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞分辨率下斑马鱼尾鳍再生过程中的常见和特异基因调控程序
截肢后,斑马鱼通过谱系限制重编程再生其受伤的尾鳍。尽管先前的研究已经绘制了这一过程的各种遗传和表观遗传维度,但不同再生细胞类型共享或独特的复杂基因调控程序仍未得到充分研究。在这里,我们通过在未受伤和再生的鳍上应用配对的snRNA-seq和snATAC-seq,绘制了鳍再生的调控图景。这张图描绘了在再生的多个阶段优势细胞群的调控动态。我们观察到在1 dpa时,与再生和发育过程相关的染色质区域的可及性显著增加,随后在后期阶段,主要细胞类型逐渐关闭。这种模式与转录组动力学不同,转录组动力学的特点是基因上调和下调几波。我们鉴定并在体内验证了细胞类型特异性和位置特异性再生反应增强子,并根据细胞类型和阶段构建了调控网络。我们的单细胞分辨率转录组和染色质可及性图谱跨越再生阶段,为再生调控机制提供了新的见解,并为社区提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
期刊最新文献
Assessing DNA methylation detection for primary human tissue using nanopore sequencing Integrating short-read and long-read single-cell RNA sequencing for comprehensive transcriptome profiling in mouse retina Identification of the male-specific region on the guppy Y Chromosome from a haplotype-resolved assembly Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs Atypical epigenetic and small RNA control of degenerated transposons and their fragments in clonally reproducing Spirodela polyrhiza
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1