Unraveling the Viral Spread of Misinformation: Maximum-Likelihood Estimation and Starlike Tree Approximation in Markovian Spreading Models

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2025-01-13 DOI:10.1109/TSP.2025.3527755
Pei-Duo Yu;Chee Wei Tan
{"title":"Unraveling the Viral Spread of Misinformation: Maximum-Likelihood Estimation and Starlike Tree Approximation in Markovian Spreading Models","authors":"Pei-Duo Yu;Chee Wei Tan","doi":"10.1109/TSP.2025.3527755","DOIUrl":null,"url":null,"abstract":"Identifying the source of epidemic-like spread in networks is crucial for removing internet viruses or finding the source of rumors in online social networks. The challenge lies in tracing the source from a snapshot observation of infected nodes. How do we accurately pinpoint the source? Utilizing snapshot data, we apply a probabilistic approach, focusing on the graph boundary and the observed time, to detect sources via an effective maximum likelihood algorithm. A novel starlike tree approximation extends applicability to general graphs, demonstrating versatility. Unlike previous works that rely heavily on structural properties alone, our method also incorporates temporal data for more precise source detection. We highlight the utility of the Gamma function for analyzing the ratio of the likelihood being the source between nodes asymptotically. Comprehensive evaluations confirm algorithmic effectiveness in diverse network scenarios, advancing source detection in large-scale network analysis and information dissemination strategies.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"446-461"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839478/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the source of epidemic-like spread in networks is crucial for removing internet viruses or finding the source of rumors in online social networks. The challenge lies in tracing the source from a snapshot observation of infected nodes. How do we accurately pinpoint the source? Utilizing snapshot data, we apply a probabilistic approach, focusing on the graph boundary and the observed time, to detect sources via an effective maximum likelihood algorithm. A novel starlike tree approximation extends applicability to general graphs, demonstrating versatility. Unlike previous works that rely heavily on structural properties alone, our method also incorporates temporal data for more precise source detection. We highlight the utility of the Gamma function for analyzing the ratio of the likelihood being the source between nodes asymptotically. Comprehensive evaluations confirm algorithmic effectiveness in diverse network scenarios, advancing source detection in large-scale network analysis and information dissemination strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解开错误信息的病毒式传播:马尔可夫传播模型中的最大似然估计和星形树近似
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent Tracking Multiple Resolvable Group Targets with Coordinated Motion via Labeled Random Finite Sets Energy-Efficient Flat Precoding for MIMO Systems Successive Refinement in Large-Scale Computation: Expediting Model Inference Applications ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1