Mechanism and regulation of iron absorption throughout the life cycle

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-01-13 DOI:10.1016/j.jare.2025.01.002
Lili Qiu, David M. Frazer, Mengxiao Hu, Rui Song, Xiaoxue Liu, Xiyu Qin, Jie Ma, Jun Zhou, Zidi Tan, Fazheng Ren, Xiaoyu Wang, James F. Collins
{"title":"Mechanism and regulation of iron absorption throughout the life cycle","authors":"Lili Qiu, David M. Frazer, Mengxiao Hu, Rui Song, Xiaoxue Liu, Xiyu Qin, Jie Ma, Jun Zhou, Zidi Tan, Fazheng Ren, Xiaoyu Wang, James F. Collins","doi":"10.1016/j.jare.2025.01.002","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements.<h3>Aim of review</h3>This review aims to provide an overview of recent researches on the regulation of iron absorption throughout mammalian life cycle, with the potential to reveal novel molecules and pathways at special stage of life. Such insights may pave the way for new treatments for disorders associated with aberrant iron homeostasis in the future.<h3>Key scientific concepts of review</h3>This review first summarize the mechanism and regulation of iron absorption throughout various life stages, highlighting that regulatory mechanisms have developed to precisely align iron absorption to iron requirements. In adults, iron absorption is enhanced when body is deficient of iron, conversely, iron absorption is reduced when iron demand decreases via systemic regulator Hepcidin and cellular regulation. In the elderly, age-related inflammation, hormonal changes, and chronic diseases may affect the production of Hepcidin, affecting iron absorption. In infants, intestinal iron absorption and its regulatory mechanism are different from that in adults and there might be an alternative pathway independent of DMT1 and FPN due to high iron absorption. Unique to the fetus, iron is absorbed from maternal stores for its own use through the placenta and is regulated by maternal iron status. This review also proposes directions for further studies, offering promising avenues for developing new treatments for disorders associated with aberrant iron homeostasis.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"28 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.002","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements.

Aim of review

This review aims to provide an overview of recent researches on the regulation of iron absorption throughout mammalian life cycle, with the potential to reveal novel molecules and pathways at special stage of life. Such insights may pave the way for new treatments for disorders associated with aberrant iron homeostasis in the future.

Key scientific concepts of review

This review first summarize the mechanism and regulation of iron absorption throughout various life stages, highlighting that regulatory mechanisms have developed to precisely align iron absorption to iron requirements. In adults, iron absorption is enhanced when body is deficient of iron, conversely, iron absorption is reduced when iron demand decreases via systemic regulator Hepcidin and cellular regulation. In the elderly, age-related inflammation, hormonal changes, and chronic diseases may affect the production of Hepcidin, affecting iron absorption. In infants, intestinal iron absorption and its regulatory mechanism are different from that in adults and there might be an alternative pathway independent of DMT1 and FPN due to high iron absorption. Unique to the fetus, iron is absorbed from maternal stores for its own use through the placenta and is regulated by maternal iron status. This review also proposes directions for further studies, offering promising avenues for developing new treatments for disorders associated with aberrant iron homeostasis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy Post-transcriptional and post-translational regulation of anthocyanin biosynthesis in sweetpotato by Ib-miR2111 and IbKFB: Implications for health promotion Versatile platforms of mussel-inspired agarose scaffold for cell cultured meat Transcriptional regulation of Rankl by Txnip-Ecd in aging and diabetic related osteoporosis Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1