Mechanistic insights into ferroptosis and apoptosis pathways: Synergistic effects of multi-organ toxicity and transgenerational effects induced by co-exposure of epoxiconazole and aflatoxin B1 in zebrafish

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-01-13 DOI:10.1016/j.jare.2025.01.020
Ruike Wang, Qi Zhang, Gang Chen, Ruirui Kou, Cuiqin Zhang, Yanhua Wang, Jing Wang, Yueqing Huang, Chen Chen
{"title":"Mechanistic insights into ferroptosis and apoptosis pathways: Synergistic effects of multi-organ toxicity and transgenerational effects induced by co-exposure of epoxiconazole and aflatoxin B1 in zebrafish","authors":"Ruike Wang, Qi Zhang, Gang Chen, Ruirui Kou, Cuiqin Zhang, Yanhua Wang, Jing Wang, Yueqing Huang, Chen Chen","doi":"10.1016/j.jare.2025.01.020","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.<h3>Objectives</h3>This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.<h3>Results</h3>Findings indicate that exposure to either EPO or AFB1, individually or combined, intensified intestinal pathological damage, decreased the expression of tight junction proteins, altered gut microbiota composition, and induced intestinal inflammation, with co-exposure causing more severe effects. RNA-seq analysis revealed an enrichment of ferroptosis and apoptosis pathways in the liver and ovaries of F0 zebrafish. Co-exposure markedly altered the expression of associated molecules, exacerbating pathological damage in these organs. Molecular docking studies revealed that AFB1 exhibited lower binding energies to Caspase3, GPX4 and IL-1β compared to EPO, suggesting that it may have a higher binding capacity. Furthermore, both single and combined exposures modified the expression of molecules related to apoptosis, inflammatory response, and ferroptosis in unexposed F1 embryos, with co-exposure demonstrating more significant biological effects, thereby confirming transgenerational toxicity.<h3>Conclusion</h3>The present study provides preliminary evidence on the potential mechanisms of combined exposure-induced multi-organ toxicity, highlighting ferroptosis of the liver and apoptosis of the ovary as key pathways. These findings provide new perspectives and methods for risk assessment of multiple environmental pollutants.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"89 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.020","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.

Objectives

This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.

Results

Findings indicate that exposure to either EPO or AFB1, individually or combined, intensified intestinal pathological damage, decreased the expression of tight junction proteins, altered gut microbiota composition, and induced intestinal inflammation, with co-exposure causing more severe effects. RNA-seq analysis revealed an enrichment of ferroptosis and apoptosis pathways in the liver and ovaries of F0 zebrafish. Co-exposure markedly altered the expression of associated molecules, exacerbating pathological damage in these organs. Molecular docking studies revealed that AFB1 exhibited lower binding energies to Caspase3, GPX4 and IL-1β compared to EPO, suggesting that it may have a higher binding capacity. Furthermore, both single and combined exposures modified the expression of molecules related to apoptosis, inflammatory response, and ferroptosis in unexposed F1 embryos, with co-exposure demonstrating more significant biological effects, thereby confirming transgenerational toxicity.

Conclusion

The present study provides preliminary evidence on the potential mechanisms of combined exposure-induced multi-organ toxicity, highlighting ferroptosis of the liver and apoptosis of the ovary as key pathways. These findings provide new perspectives and methods for risk assessment of multiple environmental pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy Post-transcriptional and post-translational regulation of anthocyanin biosynthesis in sweetpotato by Ib-miR2111 and IbKFB: Implications for health promotion Versatile platforms of mussel-inspired agarose scaffold for cell cultured meat Transcriptional regulation of Rankl by Txnip-Ecd in aging and diabetic related osteoporosis Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1