{"title":"Efficient surface reconstruction for SPH method and its application to simulation of solid-solid contact and fluid-rigid body interaction","authors":"Yihua Xiao , Duping Zhai , Dongdong Jiang , Jianli Shao","doi":"10.1016/j.enganabound.2024.106086","DOIUrl":null,"url":null,"abstract":"<div><div>Explicit surface reconstruction is useful for treating challenging boundary-related problems in smoothed particle hydrodynamics (SPH), for example, high-accuracy contact treatment. In this work, an efficient local surface reconstruction method (LSRM) is proposed. It first identifies boundary layer particles and then employs the Delaunay triangulation technique to reconstruct explicit surfaces from the boundary layer particles. The surface reconstruction efficiency of the LSRM is examined by two-dimensional and three-dimensional test cases and compared with that of a global surface reconstruction method (GSRM) proposed previously. Compared with the GSRM, the LSRM shows an increasing advantage in efficiency as the number of particles increases, and its efficiency can be dozens of times higher when the number of particles is large. The LSRM is incorporated into SPH for contact treatment and is used to simulate some typical contact problems. The simulation results show that the LSRM is applicable to solid-solid contact problems involving friction and large deformation and fluid-rigid body interaction problems with complex free surface phenomena. Compared with the GSRM, the LSRM can produce simulation results with similar accuracy and significantly improve the overall efficiency of SPH simulation.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106086"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Explicit surface reconstruction is useful for treating challenging boundary-related problems in smoothed particle hydrodynamics (SPH), for example, high-accuracy contact treatment. In this work, an efficient local surface reconstruction method (LSRM) is proposed. It first identifies boundary layer particles and then employs the Delaunay triangulation technique to reconstruct explicit surfaces from the boundary layer particles. The surface reconstruction efficiency of the LSRM is examined by two-dimensional and three-dimensional test cases and compared with that of a global surface reconstruction method (GSRM) proposed previously. Compared with the GSRM, the LSRM shows an increasing advantage in efficiency as the number of particles increases, and its efficiency can be dozens of times higher when the number of particles is large. The LSRM is incorporated into SPH for contact treatment and is used to simulate some typical contact problems. The simulation results show that the LSRM is applicable to solid-solid contact problems involving friction and large deformation and fluid-rigid body interaction problems with complex free surface phenomena. Compared with the GSRM, the LSRM can produce simulation results with similar accuracy and significantly improve the overall efficiency of SPH simulation.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.