Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202424039
Rui Li, Meng He, Chuanqi Cheng, Fanpeng Chen, Lijun Yang, Jian-Zhong Cui, Cuibo Liu, Bin Zhang
{"title":"Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines","authors":"Rui Li, Meng He, Chuanqi Cheng, Fanpeng Chen, Lijun Yang, Jian-Zhong Cui, Cuibo Liu, Bin Zhang","doi":"10.1002/anie.202424039","DOIUrl":null,"url":null,"abstract":"Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu). The low coordinated sites induced an enrichment of electrons to concentrate K+ ions hydrated deuterium water (K·D2O) and decrease the energy of the Volmer step via the polarization effect, leading to a continuous supplementation of *D for the reductive deuteration of nitriles. Moreover, the enhanced local electric field changes the adsorption configuration of nitriles from a semibridge model to a flat model, leading to faster reduction kinetics of nitriles with a high reaction rate at lower potentials. High deuterium incorporation, a wide substrate scope, and easy gram-scale synthesis over LC-Cu at 300 mA rationalize the design concept. Furthermore, the enhanced antitumor and antioxidation effects of Melatonin-d4 highlight the great promise of deuterated drugs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu). The low coordinated sites induced an enrichment of electrons to concentrate K+ ions hydrated deuterium water (K·D2O) and decrease the energy of the Volmer step via the polarization effect, leading to a continuous supplementation of *D for the reductive deuteration of nitriles. Moreover, the enhanced local electric field changes the adsorption configuration of nitriles from a semibridge model to a flat model, leading to faster reduction kinetics of nitriles with a high reaction rate at lower potentials. High deuterium incorporation, a wide substrate scope, and easy gram-scale synthesis over LC-Cu at 300 mA rationalize the design concept. Furthermore, the enhanced antitumor and antioxidation effects of Melatonin-d4 highlight the great promise of deuterated drugs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Room‐temperature Magnetocapacitance Spanning 97 K Hysteresis in Molecular Material An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties. Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing Photoinduced Late‐Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives Front Cover: Interdependence of Support Wettability, Electrodeposition Rate, Sodium Metal Anode and SEI Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1