Huaizheng Ren, Sai Li, Liang Xu, Lei Wang, Xinxin Liu, Lei Wang, Yue Liu, Liang Zhang, Han Zhang, Yuxin Gong, Chade Lv, Dongping Chen, Jianxin Wang, Qiang Lv, Yaqiang Li, Huakun Liu, Dianlong Wang, Tao Cheng, Bo Wang, Dongliang Chao, Shixue Dou
{"title":"Tailoring Water-in-DMSO Electrolyte for Ultra-stable Rechargeable Zinc Batteries","authors":"Huaizheng Ren, Sai Li, Liang Xu, Lei Wang, Xinxin Liu, Lei Wang, Yue Liu, Liang Zhang, Han Zhang, Yuxin Gong, Chade Lv, Dongping Chen, Jianxin Wang, Qiang Lv, Yaqiang Li, Huakun Liu, Dianlong Wang, Tao Cheng, Bo Wang, Dongliang Chao, Shixue Dou","doi":"10.1002/anie.202423302","DOIUrl":null,"url":null,"abstract":"Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation. The hybrid solid-electrolyte interface (SEI), formed in situ, helps Zn-Zn symmetric cell a prolonged lifespan exceeding 10000 h at 0.5 mA cm−2 and 600 h at a 60% discharge depth. The versatility of this electrolyte endows the Zn-VO2 full batteries ultra-stable cycling performance. This work provides insights into electrolyte structure-property relationships, and facilitates the design of high-performance RZBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"42 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423302","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation. The hybrid solid-electrolyte interface (SEI), formed in situ, helps Zn-Zn symmetric cell a prolonged lifespan exceeding 10000 h at 0.5 mA cm−2 and 600 h at a 60% discharge depth. The versatility of this electrolyte endows the Zn-VO2 full batteries ultra-stable cycling performance. This work provides insights into electrolyte structure-property relationships, and facilitates the design of high-performance RZBs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.