Na Chen, Ruichen Shen, Tianpei He, Na Du, Jing Xi, Yangbing Yang, Lilei Yu, Quan Yuan
{"title":"A photosynthesis-derived bionic system for sustainable biosynthesis","authors":"Na Chen, Ruichen Shen, Tianpei He, Na Du, Jing Xi, Yangbing Yang, Lilei Yu, Quan Yuan","doi":"10.1002/anie.202414981","DOIUrl":null,"url":null,"abstract":"“Cell factory” strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance. Inspired by the natural photosynthesis process in which NADPH and ATP can both be produced through the coupled electron-proton transfer processes driven by sunlight, herein we designed a light-driven bionic system composed of three modules including photo-induced electron module, electron transfer channel module and proton gradient module. The proposed strategy of light-driven bionic system enables for achieving simultaneous and controllable supplies of NADPH and ATP, thus facilitating both highly efficient CO2 fixation and biomanufacturing. The proposed light-driven bionic system design strategy in this work might pave new sustainable ways for reducing power and energy regeneration to optimize microbial metabolism, offering intriguing alternatives for CO2 emission reduction and high value-added chemical biomanufacturing.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"32 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414981","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
“Cell factory” strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance. Inspired by the natural photosynthesis process in which NADPH and ATP can both be produced through the coupled electron-proton transfer processes driven by sunlight, herein we designed a light-driven bionic system composed of three modules including photo-induced electron module, electron transfer channel module and proton gradient module. The proposed strategy of light-driven bionic system enables for achieving simultaneous and controllable supplies of NADPH and ATP, thus facilitating both highly efficient CO2 fixation and biomanufacturing. The proposed light-driven bionic system design strategy in this work might pave new sustainable ways for reducing power and energy regeneration to optimize microbial metabolism, offering intriguing alternatives for CO2 emission reduction and high value-added chemical biomanufacturing.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.