A photosynthesis-derived bionic system for sustainable biosynthesis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202414981
Na Chen, Ruichen Shen, Tianpei He, Jing Xi, Rui Zhao, Na Du, Yangbing Yang, Lilei Yu, Quan Yuan
{"title":"A photosynthesis-derived bionic system for sustainable biosynthesis","authors":"Na Chen,&nbsp;Ruichen Shen,&nbsp;Tianpei He,&nbsp;Jing Xi,&nbsp;Rui Zhao,&nbsp;Na Du,&nbsp;Yangbing Yang,&nbsp;Lilei Yu,&nbsp;Quan Yuan","doi":"10.1002/anie.202414981","DOIUrl":null,"url":null,"abstract":"<p>“Cell factory” strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO<sub>2</sub> emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide /nicotinamide adenine dinucleotide phosphate NAD(P)H and adenosine triphosphate ATP. However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NAD(P)H and ATP to optimum concentrations without causing metabolic disorder. Inspired by the natural photosynthesis process in which NAD(P)H and ATP can both be produced through the coupled electron-proton transfer processes driven by sunlight, herein we designed a light-driven bionic system composed of three modules including photo-induced electron module, electron transfer channel module and proton gradient module. The proposed strategy of light-driven bionic system enables for achieving simultaneous and controllable supplies of NAD(P)H and ATP, thus facilitating both highly efficient CO<sub>2</sub> fixation and biomanufacturing. The proposed light-driven bionic system design strategy in this work might pave new sustainable ways for reducing power and energy regeneration to optimize microbial metabolism, offering intriguing alternatives for CO<sub>2</sub> emission mitigation and high-value chemical biomanufacturing.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 7","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414981","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

“Cell factory” strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide /nicotinamide adenine dinucleotide phosphate NAD(P)H and adenosine triphosphate ATP. However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NAD(P)H and ATP to optimum concentrations without causing metabolic disorder. Inspired by the natural photosynthesis process in which NAD(P)H and ATP can both be produced through the coupled electron-proton transfer processes driven by sunlight, herein we designed a light-driven bionic system composed of three modules including photo-induced electron module, electron transfer channel module and proton gradient module. The proposed strategy of light-driven bionic system enables for achieving simultaneous and controllable supplies of NAD(P)H and ATP, thus facilitating both highly efficient CO2 fixation and biomanufacturing. The proposed light-driven bionic system design strategy in this work might pave new sustainable ways for reducing power and energy regeneration to optimize microbial metabolism, offering intriguing alternatives for CO2 emission mitigation and high-value chemical biomanufacturing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续生物合成的光合作用衍生的仿生系统
基于微生物合成代谢途径的“细胞工厂”策略为减轻对化石燃料的依赖提供了一个有趣的替代方案,化石燃料被认为是二氧化碳排放的主要来源。通常,细胞工厂中细胞内物质的合成代谢需要消耗足够的还原性烟酰胺腺嘌呤二核苷酸磷酸(NADPH)和三磷酸腺苷(ATP)。然而,如何在不引起代谢失衡的情况下,改变天然有限的合成代谢,并将不足的NADPH和ATP水平提高到最佳水平,是一个巨大的挑战。受自然光合作用过程中NADPH和ATP都是通过阳光驱动的电子-质子耦合转移过程产生的启发,我们设计了一个由光诱导电子模块、电子转移通道模块和质子梯度模块三个模块组成的光驱动仿生系统。提出的光驱动仿生系统策略能够实现NADPH和ATP的同时可控供应,从而促进高效的二氧化碳固定和生物制造。本研究提出的光驱动仿生系统设计策略可能为减少电力和能量再生以优化微生物代谢铺平新的可持续道路,为二氧化碳减排和高附加值化学生物制造提供有趣的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Tandem Assembly and Etching Chemistry towards Mesoporous Conductive Metal-Organic Frameworks for Sodium Storage over 50,000 Cycles A Multifunctional Molecular Modulated Strategy Featuring Novel Li+ Transport Centers and Li2O-Rich SEI Layer for High-Performance All-Solid-State Lithium Metal Batteries Water in Electrocatalysis Dynamic Liquid Crystal Elastomers for Body Heat- and Sunlight-Driven Self-Sustaining Motion via Material-Structure Synergy Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1