Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-13 DOI:10.1002/anie.202424056
Yanyan Zhang, Wanhai Zhou, Boya Wang, Tengsheng Zhang, Xiaoyu Yu, Xinran Li, Gaoyang Li, Hongrun Jin, Minghua Chen, Wei Li, Dongyuan Zhao, Xin Liu, Dongliang Chao
{"title":"Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water","authors":"Yanyan Zhang, Wanhai Zhou, Boya Wang, Tengsheng Zhang, Xiaoyu Yu, Xinran Li, Gaoyang Li, Hongrun Jin, Minghua Chen, Wei Li, Dongyuan Zhao, Xin Liu, Dongliang Chao","doi":"10.1002/anie.202424056","DOIUrl":null,"url":null,"abstract":"Tellurium (Te), with its rich valence states (–2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry. With strong hydrogen bonding, NH4Ac confines free water, prompting TeO2 amorphous (a-TeO2). In-situ synchrotron characterization, spectroscopy analysis, electrochemical evaluation, and theoretical calculations reveal a specific 4 e− solid-solid transition pathway (Te to a-TeO2) with accelerated diffusion and charge transfer kinetics, attributed to a closer unoccupied electron orbital to the Fermi level and a reduced water desorption energy barrier in a-TeO2. Impressively, the a-TeO2/Te electrochemistry exhibits a high reversible capacity of 834 mAh g−1 (99% of Te redox utilization), superior rate performance (644 mAh g−1 at 10 A g−1), and an ultralong lifespan (over 3000 cycles). These findings prove a new tactic to advance aqueous Te electrochemistry toward high-energy aqueous batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"28 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tellurium (Te), with its rich valence states (–2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry. With strong hydrogen bonding, NH4Ac confines free water, prompting TeO2 amorphous (a-TeO2). In-situ synchrotron characterization, spectroscopy analysis, electrochemical evaluation, and theoretical calculations reveal a specific 4 e− solid-solid transition pathway (Te to a-TeO2) with accelerated diffusion and charge transfer kinetics, attributed to a closer unoccupied electron orbital to the Fermi level and a reduced water desorption energy barrier in a-TeO2. Impressively, the a-TeO2/Te electrochemistry exhibits a high reversible capacity of 834 mAh g−1 (99% of Te redox utilization), superior rate performance (644 mAh g−1 at 10 A g−1), and an ultralong lifespan (over 3000 cycles). These findings prove a new tactic to advance aqueous Te electrochemistry toward high-energy aqueous batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Room‐temperature Magnetocapacitance Spanning 97 K Hysteresis in Molecular Material An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties. Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing Photoinduced Late‐Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives Front Cover: Interdependence of Support Wettability, Electrodeposition Rate, Sodium Metal Anode and SEI Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1