Hamas Tahir, Kangying Liu, Yun-Fang Yang, Kaushik Baruah, Brett M. Savoie, Bryan W. Boudouris
{"title":"Verdazyl radical polymers for advanced organic spintronics","authors":"Hamas Tahir, Kangying Liu, Yun-Fang Yang, Kaushik Baruah, Brett M. Savoie, Bryan W. Boudouris","doi":"10.1038/s41467-025-56056-w","DOIUrl":null,"url":null,"abstract":"<p>Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges. Despite the recent observation of organic magnetism and magnetoresistance phenomena in radical polymers, their spin propagation properties have not been thoroughly studied. Here, we show that a nonconjugated radical polymer is an exceptional spin transport medium. It shows large effective spin mixing conductance of 3.2 × 10<sup>19</sup> m<sup>–2</sup> and a room temperature spin diffusion length of 105 nm. Its temperature-independent spin diffusion length suggests that exchange-mediated transport governs spin transport. The substantial spin mixing conductance is promising, and these results establish the potential of radical polymers in emerging spin-based applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56056-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges. Despite the recent observation of organic magnetism and magnetoresistance phenomena in radical polymers, their spin propagation properties have not been thoroughly studied. Here, we show that a nonconjugated radical polymer is an exceptional spin transport medium. It shows large effective spin mixing conductance of 3.2 × 1019 m–2 and a room temperature spin diffusion length of 105 nm. Its temperature-independent spin diffusion length suggests that exchange-mediated transport governs spin transport. The substantial spin mixing conductance is promising, and these results establish the potential of radical polymers in emerging spin-based applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.