Spatiotemporal trends in Anopheles funestus breeding habitats

Grace R. Aduvukha , Elfatih M. Abdel-Rahman , Bester Tawona Mudereri , Onisimo Mutanga , John Odindi , Henri E.Z. Tonnang
{"title":"Spatiotemporal trends in Anopheles funestus breeding habitats","authors":"Grace R. Aduvukha ,&nbsp;Elfatih M. Abdel-Rahman ,&nbsp;Bester Tawona Mudereri ,&nbsp;Onisimo Mutanga ,&nbsp;John Odindi ,&nbsp;Henri E.Z. Tonnang","doi":"10.1016/j.jag.2024.104351","DOIUrl":null,"url":null,"abstract":"<div><div>Effective identification and control of malaria vector larval breeding habitats are crucial for the management and eradication of malaria. Despite its importance, the last decade has seen a decline in data availability and intervention efforts due to reduced attention and prioritization. This study addresses the geographic data scarcity concerning <em>Anopheles funestus</em> larval breeding habitats in a malaria-prone region of western Kenya. Employing a two-step methodological approach, we integrated multi-criteria decision analysis (MCDA) and rule-based fuzzy logic analysis to evaluate the spatiotemporal similarity or divergence of these habitats. The analysis spanned a five-year interval, 2008, 2013, and 2018 with 2013 serving as the base year for both hindcast and forecast predictions. The MCDA utilized categorical land use/land cover (LULC) and edaphic variables to identify potential breeding habitats, while climatic and topographic variables and spectral indices were analysed using fuzzy logic to assess the similarity or divergence of these habitats over time. Validation of the MCDA and fuzzy logic models was performed using a flight buffer distance based on adult <em>An. funestus</em> presence points (n = 136), supplemented by a limited number of larval breeding locations (n = 12) respectively. Our findings identified 147 potential <em>An. funestus</em> larval breeding habitats across the study area. The fuzzy logic analysis predicted a high degree of similarity (85.03%) in potential breeding habitats between the study years compared to the base year, with a divergence of 14.97%. This study demonstrates the feasibility of using semi-automated methods to detect both permanent and impermanent <em>An. funestus</em> breeding habitats under conditions of limited data. The methodologies developed provide a timely, cost-effective tool for enhanced surveillance and management of <em>An funestus</em> mosquito larval breeding, offering valuable insights for stakeholders involved in malaria vector monitoring and control.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104351"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156984322400709X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Effective identification and control of malaria vector larval breeding habitats are crucial for the management and eradication of malaria. Despite its importance, the last decade has seen a decline in data availability and intervention efforts due to reduced attention and prioritization. This study addresses the geographic data scarcity concerning Anopheles funestus larval breeding habitats in a malaria-prone region of western Kenya. Employing a two-step methodological approach, we integrated multi-criteria decision analysis (MCDA) and rule-based fuzzy logic analysis to evaluate the spatiotemporal similarity or divergence of these habitats. The analysis spanned a five-year interval, 2008, 2013, and 2018 with 2013 serving as the base year for both hindcast and forecast predictions. The MCDA utilized categorical land use/land cover (LULC) and edaphic variables to identify potential breeding habitats, while climatic and topographic variables and spectral indices were analysed using fuzzy logic to assess the similarity or divergence of these habitats over time. Validation of the MCDA and fuzzy logic models was performed using a flight buffer distance based on adult An. funestus presence points (n = 136), supplemented by a limited number of larval breeding locations (n = 12) respectively. Our findings identified 147 potential An. funestus larval breeding habitats across the study area. The fuzzy logic analysis predicted a high degree of similarity (85.03%) in potential breeding habitats between the study years compared to the base year, with a divergence of 14.97%. This study demonstrates the feasibility of using semi-automated methods to detect both permanent and impermanent An. funestus breeding habitats under conditions of limited data. The methodologies developed provide a timely, cost-effective tool for enhanced surveillance and management of An funestus mosquito larval breeding, offering valuable insights for stakeholders involved in malaria vector monitoring and control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
狐按蚊孳生地的时空变化趋势
有效识别和控制疟疾病媒幼虫孳生地对疟疾的管理和根除至关重要。尽管它很重要,但在过去十年中,由于关注和优先级的降低,数据可用性和干预工作有所下降。本研究解决了肯尼亚西部疟疾易发地区关于狐按蚊幼虫繁殖栖息地的地理数据短缺问题。采用两步法,将多准则决策分析(MCDA)与基于规则的模糊逻辑分析相结合,对不同生境的时空相似性或差异性进行了综合评价。分析的时间跨度为5年,分别为2008年、2013年和2018年,2013年作为预测和预测的基准年。MCDA利用分类土地利用/土地覆盖(LULC)和土壤变量来识别潜在的繁殖栖息地,并利用模糊逻辑分析气候和地形变量以及光谱指数来评估这些栖息地随时间的相似性或差异性。使用基于成人An的飞行缓冲距离对MCDA和模糊逻辑模型进行验证。Funestus存在点(n = 136)和幼虫繁殖点(n = 12)。我们发现了147个潜在的An。研究区野鼠幼虫的孳生环境。模糊逻辑分析预测,研究年与基准年的潜在繁殖生境相似性较高(85.03%),差异度为14.97%。本研究证明了使用半自动化方法检测永久和非永久An的可行性。在条件有限的情况下,土耳鼠繁殖栖息地的资料。所开发的方法为加强对沙蚊幼虫繁殖的监测和管理提供了一种及时、经济有效的工具,为参与疟疾病媒监测和控制的利益攸关方提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Statistical models for urban growth forecasting: With application to the Baltimore–Washington area Extracting a decadal deformation on Xiaolangdi upstream dam slope using seasonally inundated distributed scatterers InSAR (SIDS − InSAR) bImproved hourly all-sky land surface temperature estimation: Incorporating the temporal variability of cloud-radiation interactions Historical habitat mapping from black-and-white aerial photography: A proof of concept for post World War II Switzerland A novel hyperspectral remote sensing estimation model for surface soil texture using AHSI/ZY1-02D satellite image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1