{"title":"Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting","authors":"Minming Jiang, Jiang Xu, Yujie Chen, Luqi Wang, Qi Zhou, Paul Munroe, Linlin Li, Zong-Han Xie, Shengjie Peng","doi":"10.1002/anie.202424195","DOIUrl":null,"url":null,"abstract":"Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.9 nm, thus maximizing atomic utilization. The unique crystalline-amorphous heterojunction interface enhances electrocatalytic stability. Furthermore, the electronic regulation of metal sites by interstitial C and N atoms not only optimizes the adsorption-dissociation process in hydrogen evolution reaction (HER), but also accelerates the surface reconstruction of hydroxyl oxides to enhance the oxygen evolution reaction (OER) activity. As a result, the as-prepared coating achieved overpotentials of only 62 and 237 mV for the HER and OER at 10 mA cm−2 in alkaline electrolytes, and exhibited excellent OWS performance and long-term stability at high current densities. This work presents a new perspective for synthesizing TMISS nanocrystals and promotes their application in bifunctional electrocatalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"91 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.9 nm, thus maximizing atomic utilization. The unique crystalline-amorphous heterojunction interface enhances electrocatalytic stability. Furthermore, the electronic regulation of metal sites by interstitial C and N atoms not only optimizes the adsorption-dissociation process in hydrogen evolution reaction (HER), but also accelerates the surface reconstruction of hydroxyl oxides to enhance the oxygen evolution reaction (OER) activity. As a result, the as-prepared coating achieved overpotentials of only 62 and 237 mV for the HER and OER at 10 mA cm−2 in alkaline electrolytes, and exhibited excellent OWS performance and long-term stability at high current densities. This work presents a new perspective for synthesizing TMISS nanocrystals and promotes their application in bifunctional electrocatalysts.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.