{"title":"The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy","authors":"Rong-Yao Gao, Jian-Wei Zou, Yan-Ping Shi, Dan-Hong Li, Junrong Zheng, Jian-Ping Zhang","doi":"10.1021/acs.jpclett.4c03171","DOIUrl":null,"url":null,"abstract":"Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (<i>fs</i>-TA) absorption spectroscopy in 430–1,700 nm to Chls <i>a</i> and <i>b</i> in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B<sub>x,y</sub> ← Q<sub><i>y</i></sub> and B<sub>x,y</sub> ← Q<sub><i>x</i></sub> transitions in 930–1,700 nm, which together with the steady-state absorption in 400–700 nm unveiled the Q<sub>x(0,0)</sub>-state energy that lies 1,000 ± 400 and 600 ± 400 cm<sup>–1</sup> above the Q<sub>y(0,0)</sub>-state for Chls <i>a</i> and <i>b</i>, respectively. In addition, the Q<sub><i>x</i></sub>-to-Q<sub><i>y</i></sub> internal conversion time constants are estimated to be less than 80 fs for Chls <i>a</i> and <i>b</i>. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"29 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430–1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930–1,700 nm, which together with the steady-state absorption in 400–700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm–1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.