Evaluating the Dehydrogenation Performance of Cyclohexane on Pt-Skin AgPt3(111) and Ag3Pt(111) Surface Slabs: A Density Functional Theory Approach

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-01-14 DOI:10.1021/acs.jpcc.4c05825
Desalegn Nigatu Gemechu, Kingsley Onyebuchi Obodo, Ahmed Mustefa Mohammed, Yedilfana Setarge Mekonnen
{"title":"Evaluating the Dehydrogenation Performance of Cyclohexane on Pt-Skin AgPt3(111) and Ag3Pt(111) Surface Slabs: A Density Functional Theory Approach","authors":"Desalegn Nigatu Gemechu, Kingsley Onyebuchi Obodo, Ahmed Mustefa Mohammed, Yedilfana Setarge Mekonnen","doi":"10.1021/acs.jpcc.4c05825","DOIUrl":null,"url":null,"abstract":"The development of highly effective dehydrogenation catalysts presents significant potential for storing hydrogen solutions with favorable economic advantages. In this study, we examined the dehydrogenation of cyclohexane on Pt-skin AgPt<sub>3</sub>(111) and Ag<sub>3</sub>Pt(111) surfaces in comparison with that on a Pt(111) pristine surface by applying density functional theory. We assessed the performance of various exchange–correlation functionals (PBE, BEEF-vdW, optPBE-vdW, and PBE-D3) in predicting the adsorption energy of cyclohexane on Pt–AgPt<sub>3</sub>(111), Pt–Ag<sub>3</sub>Pt(111), and Pt(111) surfaces and compared them to the experimental data. Through systematic calculations, we analyzed the electronic and structural properties of catalysts, adsorption energies of cyclohexane and intermediate molecules on various Ag–Pt alloy surfaces, surface charge distribution, dehydrogenation processes, and the effect of Ag concentration on its activity. The findings indicate that an increase in the Ag content leads to a closer shift of the d-band center of the Pt atom toward the Fermi level, moving from −2.31 to −1.81 eV. This shift increases surface charge accumulation. This gradual accumulation enhances the adsorption of cyclohexane. Notably, the dehydrogenation of cyclohexane on Pt-skin Ag<sub>3</sub>Pt exhibited a lower reaction energy, with a value of 1.31 eV compared to the pristine Pt(111) catalyst. This study revealed that the Pt-skin Ag<sub>3</sub>Pt(111) catalyst exhibits enhanced performance for the dehydrogenation of cyclohexane, which should stimulate additional experimental studies.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"82 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05825","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of highly effective dehydrogenation catalysts presents significant potential for storing hydrogen solutions with favorable economic advantages. In this study, we examined the dehydrogenation of cyclohexane on Pt-skin AgPt3(111) and Ag3Pt(111) surfaces in comparison with that on a Pt(111) pristine surface by applying density functional theory. We assessed the performance of various exchange–correlation functionals (PBE, BEEF-vdW, optPBE-vdW, and PBE-D3) in predicting the adsorption energy of cyclohexane on Pt–AgPt3(111), Pt–Ag3Pt(111), and Pt(111) surfaces and compared them to the experimental data. Through systematic calculations, we analyzed the electronic and structural properties of catalysts, adsorption energies of cyclohexane and intermediate molecules on various Ag–Pt alloy surfaces, surface charge distribution, dehydrogenation processes, and the effect of Ag concentration on its activity. The findings indicate that an increase in the Ag content leads to a closer shift of the d-band center of the Pt atom toward the Fermi level, moving from −2.31 to −1.81 eV. This shift increases surface charge accumulation. This gradual accumulation enhances the adsorption of cyclohexane. Notably, the dehydrogenation of cyclohexane on Pt-skin Ag3Pt exhibited a lower reaction energy, with a value of 1.31 eV compared to the pristine Pt(111) catalyst. This study revealed that the Pt-skin Ag3Pt(111) catalyst exhibits enhanced performance for the dehydrogenation of cyclohexane, which should stimulate additional experimental studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Structural Evolution and Metal–Insulator–Metal Transitions in Hafnium Oxides: Implication for Memristive Devices Optical Emission Spectroscopy and Gas Kinetics of Picosecond Laser-Induced Chlorine Dissociation for Atomic Layer Etching of Silicon Effect of Doping on Electrocatalytic Dehydrogenation and Hydrogenation of Methyl Decalin–Methyl Naphthalene System Predicting Fundamental Gaps of Chromium-Based 2D Materials Using GW Methods Multifunctional Properties of FeMnScAl Quaternary Heusler Alloy: Insights into Spintronics, Photovoltaics, and Thermoelectric Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1