Efficient CORDIC-Based Activation Functions for RNN Acceleration on FPGAs

Wan Shen;Junye Jiang;Minghan Li;Shuanglong Liu
{"title":"Efficient CORDIC-Based Activation Functions for RNN Acceleration on FPGAs","authors":"Wan Shen;Junye Jiang;Minghan Li;Shuanglong Liu","doi":"10.1109/TAI.2024.3474648","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks (RNNs), particularly long short-term memory (LSTM) networks, have emerged as standard tools for tackling a wide range of time series applications, such as natural language processing. However, deploying these models on edge devices presents great challenges due to limited computational resources. Additionally, the implementation of RNN activation functions on low-end hardware devices significantly impacts the overall network performance, as activations constitute the dominant part of execution time. In this work, we propose an efficient approach for implementing commonly used RNN activations, leveraging an optimized coordinate rotation digital computer algorithm (CORDIC). Moreover, we propose a unified hardware architecture for mapping the CORDIC-based method onto field-programmable gate arrays (FPGAs), which can be configured to implement multiple nonlinear activation functions. Our architecture reduces the computational time with fewer iterations in CORDIC compared with existing methods, rendering it particularly suitable for resource-constrained edge devices. Our design is implemented on a Xilinx Zynq-7000 device and evaluated across three RNNs and benchmark datasets. Experimental results demonstrate that our design achieves up to a 2<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula> speedup while maintaining model accuracy compared with the state-of-the-art designs.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"199-210"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706602/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent neural networks (RNNs), particularly long short-term memory (LSTM) networks, have emerged as standard tools for tackling a wide range of time series applications, such as natural language processing. However, deploying these models on edge devices presents great challenges due to limited computational resources. Additionally, the implementation of RNN activation functions on low-end hardware devices significantly impacts the overall network performance, as activations constitute the dominant part of execution time. In this work, we propose an efficient approach for implementing commonly used RNN activations, leveraging an optimized coordinate rotation digital computer algorithm (CORDIC). Moreover, we propose a unified hardware architecture for mapping the CORDIC-based method onto field-programmable gate arrays (FPGAs), which can be configured to implement multiple nonlinear activation functions. Our architecture reduces the computational time with fewer iterations in CORDIC compared with existing methods, rendering it particularly suitable for resource-constrained edge devices. Our design is implemented on a Xilinx Zynq-7000 device and evaluated across three RNNs and benchmark datasets. Experimental results demonstrate that our design achieves up to a 2$\boldsymbol{\times}$ speedup while maintaining model accuracy compared with the state-of-the-art designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1