Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures

Shivendra Singh Parihar;Girish Pahwa;Baker Mohammad;Yogesh Singh Chauhan;Hussam Amrouch
{"title":"Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures","authors":"Shivendra Singh Parihar;Girish Pahwa;Baker Mohammad;Yogesh Singh Chauhan;Hussam Amrouch","doi":"10.1109/TQE.2024.3512367","DOIUrl":null,"url":null,"abstract":"Complementary metal–oxide–semiconductor (CMOS)-based computing promises drastic improvement in performance at extremely low temperatures (e.g., 77 K, 10 K). The field of extremely low temperature CMOS-environment-based computing holds the promise of delivering remarkable enhancements in both performance and power consumption. Static random access memory (SRAM) plays a major role in determining the performance and efficiency of any processor due to its superior performance and density. This work aims to reveal how extremely low temperature operations profoundly impact the existing well-known tradeoffs in SRAM-based memory arrays. To accomplish this, first, we measure and model the 5 nm fin field-effect transistors characteristics over a wide temperature range from 300 K down to 10 K. Next, we develop a framework to perform simulations on the SRAM array by varying the number of rows and columns for examining the influence of leakage current (<inline-formula><tex-math>$I$</tex-math></inline-formula><sub>leak</sub>) and parasitic effects of bit line (BL) and word line (WL) on the size and performance of the SRAM array under extremely low temperatures. For a comprehensive analysis, we further investigated the maximum attainable array size, extending our study down to 10 K, utilizing three distinct cell types. With the help of SRAM array simulations, we reveal that the maximum array size at extremely low temperatures is limited by WL parasitics instead of <inline-formula><tex-math>$I$</tex-math></inline-formula><sub>leak</sub>, and the performance of the SRAM is governed by BL and WL parasitics. In addition, we elucidate the influence of transistor threshold voltage (<inline-formula><tex-math>$V$</tex-math></inline-formula><sub>TH</sub>) engineering on the optimization of the SRAM array at extremely low temperature environments.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10778409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complementary metal–oxide–semiconductor (CMOS)-based computing promises drastic improvement in performance at extremely low temperatures (e.g., 77 K, 10 K). The field of extremely low temperature CMOS-environment-based computing holds the promise of delivering remarkable enhancements in both performance and power consumption. Static random access memory (SRAM) plays a major role in determining the performance and efficiency of any processor due to its superior performance and density. This work aims to reveal how extremely low temperature operations profoundly impact the existing well-known tradeoffs in SRAM-based memory arrays. To accomplish this, first, we measure and model the 5 nm fin field-effect transistors characteristics over a wide temperature range from 300 K down to 10 K. Next, we develop a framework to perform simulations on the SRAM array by varying the number of rows and columns for examining the influence of leakage current ($I$leak) and parasitic effects of bit line (BL) and word line (WL) on the size and performance of the SRAM array under extremely low temperatures. For a comprehensive analysis, we further investigated the maximum attainable array size, extending our study down to 10 K, utilizing three distinct cell types. With the help of SRAM array simulations, we reveal that the maximum array size at extremely low temperatures is limited by WL parasitics instead of $I$leak, and the performance of the SRAM is governed by BL and WL parasitics. In addition, we elucidate the influence of transistor threshold voltage ($V$TH) engineering on the optimization of the SRAM array at extremely low temperature environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极低温下5nm FinFET SRAM阵列的新权衡
基于互补金属氧化物半导体(CMOS)的计算有望在极低温(例如77 K, 10 K)下大幅提高性能。基于CMOS环境的极低温计算领域有望在性能和功耗方面实现显着提高。静态随机存取存储器(SRAM)由于其优越的性能和密度,在决定任何处理器的性能和效率方面起着重要作用。这项工作旨在揭示极低温操作如何深刻影响基于sram的存储阵列中现有的众所周知的权衡。为了实现这一目标,首先,我们在300 K到10 K的宽温度范围内测量并模拟了5nm翅片场效应晶体管的特性。接下来,我们开发了一个框架,通过改变行数和列数来对SRAM阵列进行模拟,以检查泄漏电流($I$leak)和位线(BL)和字线(WL)的寄生效应对SRAM阵列在极低温下的尺寸和性能的影响。为了进行全面分析,我们进一步研究了可实现的最大阵列大小,将我们的研究扩展到10 K,利用三种不同的细胞类型。通过对SRAM阵列的仿真,我们发现在极低温度下的最大阵列尺寸是由WL寄生而不是$I$泄漏限制的,SRAM的性能是由BL和WL寄生控制的。此外,我们还阐明了晶体管阈值电压($V$TH)工程对极低温环境下SRAM阵列优化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
C3-VQA: Cryogenic Counter-Based Coprocessor for Variational Quantum Algorithms RSFQ All-Digital Programmable Multitone Generator for Quantum Applications IEEE Transactions on Quantum Engineering Publication Information Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures Dissipative Variational Quantum Algorithms for Gibbs State Preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1