Knowledge Probabilization in Ensemble Distillation: Improving Accuracy and Uncertainty Quantification for Object Detectors

Yang Yang;Chao Wang;Lei Gong;Min Wu;Zhenghua Chen;Xiang Li;Xianglan Chen;Xuehai Zhou
{"title":"Knowledge Probabilization in Ensemble Distillation: Improving Accuracy and Uncertainty Quantification for Object Detectors","authors":"Yang Yang;Chao Wang;Lei Gong;Min Wu;Zhenghua Chen;Xiang Li;Xianglan Chen;Xuehai Zhou","doi":"10.1109/TAI.2024.3474654","DOIUrl":null,"url":null,"abstract":"Ensemble object detectors have demonstrated remarkable effectiveness in enhancing prediction accuracy and uncertainty quantification. However, their widespread adoption is hindered by significant computational and storage demands, limiting their feasibility in resource-constrained settings. To overcome this, researchers have focused on distilling the knowledge from ensemble object detectors into a single model. In this article, we introduce probabilization based ensemble distillation (ProbED), an innovative ensemble distillation framework that consolidates knowledge from multiple object detectors into a single, resource-efficient model. Unlike traditional ensemble distillation methods that average the outputs of subteachers, ProbED captures comprehensive outcome distributions from all subteachers, providing a more nuanced approach to knowledge transfer. ProbED employs knowledge probabilization to achieve a sophisticated and refined aggregation of teacher knowledge, including feature knowledge, semantic knowledge, and localization knowledge, resulting in dual improvements in prediction accuracy and uncertainty quantification for the student model. In particular, ProED's novel knowledge probabilization-based approach to aggregating teacher knowledge is inspired by our empirical observations, which demonstrate that knowledge probabilization excels in effectively representing uncertainty, improving prediction, and facilitating robust knowledge transfer. Furthermore, we introduce a random smoothing perturbation technique to modify inputs within ProbED, further enhancing the distillation process. Extensive experiments highlight ProbED's ability to significantly enhance the prediction accuracy and uncertainty quantification of various object detectors, demonstrating its superior performance compared to other state-of-the-art techniques.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"221-233"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706587/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble object detectors have demonstrated remarkable effectiveness in enhancing prediction accuracy and uncertainty quantification. However, their widespread adoption is hindered by significant computational and storage demands, limiting their feasibility in resource-constrained settings. To overcome this, researchers have focused on distilling the knowledge from ensemble object detectors into a single model. In this article, we introduce probabilization based ensemble distillation (ProbED), an innovative ensemble distillation framework that consolidates knowledge from multiple object detectors into a single, resource-efficient model. Unlike traditional ensemble distillation methods that average the outputs of subteachers, ProbED captures comprehensive outcome distributions from all subteachers, providing a more nuanced approach to knowledge transfer. ProbED employs knowledge probabilization to achieve a sophisticated and refined aggregation of teacher knowledge, including feature knowledge, semantic knowledge, and localization knowledge, resulting in dual improvements in prediction accuracy and uncertainty quantification for the student model. In particular, ProED's novel knowledge probabilization-based approach to aggregating teacher knowledge is inspired by our empirical observations, which demonstrate that knowledge probabilization excels in effectively representing uncertainty, improving prediction, and facilitating robust knowledge transfer. Furthermore, we introduce a random smoothing perturbation technique to modify inputs within ProbED, further enhancing the distillation process. Extensive experiments highlight ProbED's ability to significantly enhance the prediction accuracy and uncertainty quantification of various object detectors, demonstrating its superior performance compared to other state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1