Synergistic Terrain-Adaptive Morphing and Trajectory Tracking in a Transformable-Wheeled Robot

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-01 DOI:10.1109/LRA.2024.3524876
Ke Shi;Zainan Jiang;Borui Liu;Guocai Yang;Minghe Jin
{"title":"Synergistic Terrain-Adaptive Morphing and Trajectory Tracking in a Transformable-Wheeled Robot","authors":"Ke Shi;Zainan Jiang;Borui Liu;Guocai Yang;Minghe Jin","doi":"10.1109/LRA.2024.3524876","DOIUrl":null,"url":null,"abstract":"Transformable-wheeled robots exhibit efficient locomotion and obstacle negotiation through mode transformation, which underpins the development of the multimodal robot MTABot—a previously validated platform. However, existing literature primarily focuses on structural design, leaving autonomous mode transitions across varying terrains as a significant challenge. This paper presents a unified terrain-adaptive morphing and trajectory tracking approach for MTABot, utilizing the Nonlinear Model Predictive Control (NMPC) framework. This method eliminates the need for environmental recognition or prior training. Specifically, a segmented kinematic model for the transformable wheel has been developed, ensuring the feasibility of motion in both rolling and climbing modes. Additionally, a virtual ground attachment constraint is proposed to guide adaptive morphing for overcoming single or small obstacles. An online weight adjustment method for NMPC is introduced to synchronize wheel motion and overcome continuous large obstacles. Comprehensive experiments in multi-terrain composite scenarios and various obstacle-crossing tests validated the effectiveness of the proposed approach.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1656-1663"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819625/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transformable-wheeled robots exhibit efficient locomotion and obstacle negotiation through mode transformation, which underpins the development of the multimodal robot MTABot—a previously validated platform. However, existing literature primarily focuses on structural design, leaving autonomous mode transitions across varying terrains as a significant challenge. This paper presents a unified terrain-adaptive morphing and trajectory tracking approach for MTABot, utilizing the Nonlinear Model Predictive Control (NMPC) framework. This method eliminates the need for environmental recognition or prior training. Specifically, a segmented kinematic model for the transformable wheel has been developed, ensuring the feasibility of motion in both rolling and climbing modes. Additionally, a virtual ground attachment constraint is proposed to guide adaptive morphing for overcoming single or small obstacles. An online weight adjustment method for NMPC is introduced to synchronize wheel motion and overcome continuous large obstacles. Comprehensive experiments in multi-terrain composite scenarios and various obstacle-crossing tests validated the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变形轮式机器人的协同地形自适应变形与轨迹跟踪
可变形轮式机器人通过模式转换实现了高效的运动和障碍物协商,这也是多模式机器人 MTABot 的开发基础--MTABot 是一个先前已通过验证的平台。然而,现有文献主要集中在结构设计方面,在不同地形上的自主模式转换仍是一个重大挑战。本文利用非线性模型预测控制(NMPC)框架,为 MTABot 提出了一种统一的地形适应性变形和轨迹跟踪方法。该方法无需环境识别或事先训练。具体来说,为可变换车轮开发了一个分段运动学模型,确保了滚动和攀爬模式下运动的可行性。此外,还提出了一种虚拟地面附着约束,以指导克服单个或小型障碍物的自适应变形。还引入了一种 NMPC 在线重量调整方法,以同步车轮运动并克服连续的大型障碍。在多地形复合场景和各种障碍穿越测试中进行的综合实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Development of a Photo-Curing 3D Printer for Fabrication of Small-Scale Soft Robots With Programming Spatial Magnetization Human-Inspired Robotic Assembly for Multiple Peg-In/Out-Hole Tasks in On-Orbit Refueling Adaptive Non-Linear Centroidal MPC With Stability Guarantees for Robust Locomotion of Legged Robots TLS-SLAM: Gaussian Splatting SLAM Tailored for Large-Scale Scenes Delayed Dynamic Model Scheduled Reinforcement Learning With Time-Varying Delays for Robotic Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1