Inverse Design of Snap-Actuated Jumping Robots Powered by Mechanics-Aided Machine Learning

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-26 DOI:10.1109/LRA.2024.3523218
Dezhong Tong;Zhuonan Hao;Mingchao Liu;Weicheng Huang
{"title":"Inverse Design of Snap-Actuated Jumping Robots Powered by Mechanics-Aided Machine Learning","authors":"Dezhong Tong;Zhuonan Hao;Mingchao Liu;Weicheng Huang","doi":"10.1109/LRA.2024.3523218","DOIUrl":null,"url":null,"abstract":"Simulating soft robots offers a cost-effective approach to exploring their design and control strategies. While current models, such as finite element analysis, are effective in capturing soft robotic dynamics, the field still requires a broadly applicable and efficient numerical simulation method. In this letter, we introduce a discrete differential geometry-based framework for the model-based inverse design of a novel snap-actuated jumping robot. Our findings reveal that the snapping beam actuator exhibits both symmetric and asymmetric dynamic modes, enabling tunable robot trajectories (e.g., horizontal or vertical jumps). Leveraging this bistable beam as a robotic actuator, we propose a physics-data hybrid inverse design strategy to endow the snap-jump robot with a diverse range of jumping capabilities. By utilizing a physical engine to examine the effects of design parameters on jump dynamics, we then use extensive simulation data to establish a data-driven inverse design solution. This approach allows rapid exploration of parameter spaces to achieve targeted jump trajectories, providing a robust foundation for the robot's fabrication. Our methodology offers a powerful framework for advancing the design and control of soft robots through integrated simulation and data-driven techniques.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1720-1727"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816482/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating soft robots offers a cost-effective approach to exploring their design and control strategies. While current models, such as finite element analysis, are effective in capturing soft robotic dynamics, the field still requires a broadly applicable and efficient numerical simulation method. In this letter, we introduce a discrete differential geometry-based framework for the model-based inverse design of a novel snap-actuated jumping robot. Our findings reveal that the snapping beam actuator exhibits both symmetric and asymmetric dynamic modes, enabling tunable robot trajectories (e.g., horizontal or vertical jumps). Leveraging this bistable beam as a robotic actuator, we propose a physics-data hybrid inverse design strategy to endow the snap-jump robot with a diverse range of jumping capabilities. By utilizing a physical engine to examine the effects of design parameters on jump dynamics, we then use extensive simulation data to establish a data-driven inverse design solution. This approach allows rapid exploration of parameter spaces to achieve targeted jump trajectories, providing a robust foundation for the robot's fabrication. Our methodology offers a powerful framework for advancing the design and control of soft robots through integrated simulation and data-driven techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机械辅助机器学习的弹跳机器人逆设计
模拟软体机器人为探索其设计和控制策略提供了一种经济有效的方法。虽然有限元分析等现有模型能有效捕捉软机器人动力学,但该领域仍需要一种广泛适用且高效的数值模拟方法。在这封信中,我们介绍了一种基于离散微分几何的框架,用于基于模型的新型扣动式跳跃机器人的逆向设计。我们的研究结果表明,折跃梁致动器同时表现出对称和非对称两种动态模式,从而实现了可调整的机器人轨迹(例如水平或垂直跳跃)。利用这种双稳态梁作为机器人致动器,我们提出了一种物理-数据混合反向设计策略,以赋予弹跳机器人多种跳跃能力。通过利用物理引擎来研究设计参数对跳跃动力学的影响,然后利用大量模拟数据来建立数据驱动的逆向设计方案。这种方法允许快速探索参数空间,以实现目标跳跃轨迹,为机器人的制造奠定了坚实的基础。我们的方法提供了一个强大的框架,可通过集成仿真和数据驱动技术推进软机器人的设计和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1