Specificity-Guided Cross-Modal Feature Reconstruction for RGB-Infrared Object Detection

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2024-11-20 DOI:10.1109/TITS.2024.3495028
Xiaoyu Sun;Yaohui Zhu;Hua Huang
{"title":"Specificity-Guided Cross-Modal Feature Reconstruction for RGB-Infrared Object Detection","authors":"Xiaoyu Sun;Yaohui Zhu;Hua Huang","doi":"10.1109/TITS.2024.3495028","DOIUrl":null,"url":null,"abstract":"RGB-Infrared object detection is an essential technology for the intelligent transportation system. Existing most works on RGB-Infrared object detection focus on how to fuse RGB and infrared features. However, these works overlook the inherent differences between RGB and infrared modalities, leading to insufficient modal feature fusion and limiting the performance of RGB-Infrared object detection. To address the above issues, a Specificity-guided Cross-modal Feature Reconstruction(SCFR) algorithm is proposed to establish modality-specific correlation for RGB-Infrared object detection. Specifically, the proposed SCFR involves the modality-specific cross-modal feature reconstruction network and two modality-specific losses. The modality-specific cross-modal feature reconstruction network performs cross-modal feature reconstruction on RGB and infrared modalities to establish modality-specific correlation. The modality-specific losses guide the direction of feature learning for reconstructing the expressive modality-specific features. These specific features can be used to achieve more efficient feature fusion, thus improving object detection performance. Comprehensive experimental results on three RGB-Infrared detection datasets demonstrate the effectiveness and the superiority of the proposed method. Our code will be available at <uri>https://github.com/SXYSUOSUO/SCFR.git</uri>.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 1","pages":"950-961"},"PeriodicalIF":7.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10759534/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

RGB-Infrared object detection is an essential technology for the intelligent transportation system. Existing most works on RGB-Infrared object detection focus on how to fuse RGB and infrared features. However, these works overlook the inherent differences between RGB and infrared modalities, leading to insufficient modal feature fusion and limiting the performance of RGB-Infrared object detection. To address the above issues, a Specificity-guided Cross-modal Feature Reconstruction(SCFR) algorithm is proposed to establish modality-specific correlation for RGB-Infrared object detection. Specifically, the proposed SCFR involves the modality-specific cross-modal feature reconstruction network and two modality-specific losses. The modality-specific cross-modal feature reconstruction network performs cross-modal feature reconstruction on RGB and infrared modalities to establish modality-specific correlation. The modality-specific losses guide the direction of feature learning for reconstructing the expressive modality-specific features. These specific features can be used to achieve more efficient feature fusion, thus improving object detection performance. Comprehensive experimental results on three RGB-Infrared detection datasets demonstrate the effectiveness and the superiority of the proposed method. Our code will be available at https://github.com/SXYSUOSUO/SCFR.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
rgb -红外目标检测的特异性引导跨模态特征重构
RGB 红外物体检测是智能交通系统的一项基本技术。现有的大多数 RGB 红外物体检测研究都侧重于如何融合 RGB 和红外特征。然而,这些研究忽视了 RGB 和红外模式之间的固有差异,导致模式特征融合不充分,限制了 RGB 红外目标检测的性能。针对上述问题,本文提出了一种特定性引导的跨模态特征重构(SCFR)算法,为 RGB 红外物体检测建立特定模态相关性。具体来说,所提出的 SCFR 包括特定模态跨模态特征重建网络和两个特定模态损失。特定模态跨模态特征重建网络对 RGB 和红外模态进行跨模态特征重建,以建立特定模态相关性。特定模态损失会引导特征学习的方向,以重建具有表现力的特定模态特征。这些特定特征可用于实现更高效的特征融合,从而提高物体检测性能。三个 RGB 红外检测数据集的综合实验结果证明了所提方法的有效性和优越性。我们的代码将发布在 https://github.com/SXYSUOSUO/SCFR.git 网站上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents IEEE Intelligent Transportation Systems Society Information Predicting Motion Incongruence Ratings in Closed- and Open-Loop Urban Driving Simulation Scanning the Issue IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1